
Principal Component 
Analysis



Idea
High dimensional data can often be represented using a much lower dimensional 
space. This happens when the data lives near a linear manifold in the high 
dimensional space.

If we find the manifold we can project the data in the manifold and using to 
represent the data without losing much information.



Manifold
A Manifold is a topological space that locally (near each point) resembles the Euclidean 
space.

Consider the upper half of the unit circle, x2 + y2 = 1, where y≥0 (yellow arc).

Every point on this arc can be uniquely identified by its x-coordinate 
χtop(x,y) = x

The projection onto the first coordinate defines a smooth and invertible 
mapping from the upper arc to the open interval (−1,1)

Functions which provide a one-to-one correspondence between open 
regions of a surface and subsets of Euclidean space, are called charts.



Charts
Each chart can be seen as a mapping ϕ : R1 → S ⊂ R2. ϕ must be smooth and 
invertible (diffeomorphism).  The key property is that both the function and its 
inverse are continuously differentiable.

The domain of ϕ is the parametric space and is Euclidean.

The image of ϕ is the embedding and is a surface.

Manifolds in the end are unions of charts.



Unsupervised Learning
Unsupervised learning focuses on effectively representing datasets that lack 
labeled outputs, meaning we work solely with input data.

The primary goal is to uncover meaningful structures or representations within the 
data.

This concept is closely related to the idea of a spanning set of vectors in basic 
linear algebra, where the aim is to represent a space efficiently using a minimal 
and meaningful set of components.



Vector Space 
When visualizing data points in a multi-dimensional vector space, we can represent them as either dots 
(left panel) or arrows (middle panel). To understand a basis, it’s helpful to use both conventions 
simultaneously (right panel): some points as arrows (a basis or spanning set) and others as dots (the 
points to be represented). The basis vectors are used to efficiently reconstruct all other points in the 
space.



Basis representation
Suppose our dataset consists of N input points, {x1,x2,…,xN}, each living in D-dimensional 
space. For simplicity, we assume the dataset has been mean-centered (mean is 
subtracted along each dimension) ensuring the data is centered at the origin.

To perfectly represent all N points, the basis {c1,c2,…,cD} must also reside in the same 
D-dimensional space. For any D-dimensional data point, there must exist a set of weights 
such that the basis, in a specific linear combination, reconstructs the data point:

This requires the basis vectors to be linearly independent, meaning they do not overlap 
and point in distinct directions, ensuring they span the entire D-dimensional space.



Standard basis
As a simple example, consider the spanning set as the D standard basis vectors. 
Each standard basis vector consists of zeros everywhere except for a 1 in the k-th 
position: ck=[0,0,…,1,…,0] where the 1 is in the k-th slot.

Key properties

Or 

Representing a data point  using the standard basis is straightforward. The weights 
are simply the values of the data point itself: wd,n=xd,n. Therefore the new 
representation for the point xn is exactly wn.

For most any other spanning set however these weights must be solved for 
numerically.



Example
Once tuned, the weight vector wn provides the representation (or encoding or 
embedding) of xn in terms of the spanning set c1,…,cD. 



How do we find the proper weights?

C is DxD matrix where the columns are the basis vectors, wn is the learned weight and xn the 
original input.

By setting the gradient of the cost function to zero and solving for wn , we obtain a linear 
symmetric system of equations:

CTCwn=CTxn



Orthonormal basis?
When the spanning set is orthonormal, the algebraic formula for the weight vector 
or encoding wp  of a point xp  becomes straightforward:

wp=CTxp

This equation demonstrates that, when the spanning set is orthonormal, the entire 
set of encodings for a dataset can be expressed directly in terms of the spanning 
set and the data itself. 

CCTxp = xp 

The operation CCT acts as a projection matrix, ensuring that each data point xp  is 
perfectly represented by the orthonormal basis, with no need for further 
adjustment or solving systems of equations. 



Into a Smaller Dimension
We previously discussed two key requirements for a spanning set or basis to 
perfectly represent points in a generic D-dimensional space:

1. The vectors must be linearly independent, meaning they point in different 
directions within the space.

2. The set must contain at least D-vectors to span the entire space.

But what happens if we relax the second condition and consider a case where we 
have fewer than D spanning vectors, specifically K≤D?



Lower dimension



Doesn’t change much
While we may not be able to perfectly represent a given point or set of points in 
the space we can still approximate it very well using k spanning vectors C now is 
(DxK). Once the weight vectors wp are computed, the projection of xp  (its 
representation in the subspace spanned by C) is given by Cwp . This projection 
represents the 'dropping' of xp  perpendicularly onto the subspace formed by the K 
basis vectors. The weight vector wp  gives the encoded representation of xp over 
the spanning set C. The decoded version of xp is simply the projection of the 
original data point onto the subspace defined by the spanning vectors, which is 
given by Cwp.



See?



PCA
We will learn both an appropriate basis and the corresponding weights. This 
approach, where the basis is learned alongside the weights, is known as Principal 
Component Analysis (PCA).

The only change here is that, since we aim to learn the basis C as well, it has been 
added to the list of variables we wish to minimize in the original Least Squares 
cost function. 



Learn orthonormal Basis
If we constrain our search to orthogonal matrices C such that CTC=I (K×K)  , the 
PCA Least Squares cost function simplifies as follows:

This is significant because, under the orthogonality constraint, the cost function 
no longer depends on the weight vectors wn , and is only a function of C. 



Autoencoder
This simplified PCA Least Squares cost function is known as the autoencoder. The 
reason for this name is that, by minimizing the cost, we learn both the encoding 
(via the learned weights wp ) and the decoding (via the projection Cwp) for each 
data point. In this form, we aim to encode and decode each point in terms of itself. 



The solution?
The classic orthogonal PCA minimizer of the autoencoder cost function. The elements of this 
basis point in the orthogonal directions of variance of the dataset, that is the orthogonal directions 
in which the dataset is most spread out.

It is a closed form solution!

The elements of this 
basis are so special they 
are given the formal 
name principal 
components



Analytical Solution
Given the data matrix X(NxD), the principal component basis can be computed (as 
a minimum of the autoencoder cost function) as the eigenvectors of the 
corresponding correlation matrix of this data

The eigenvector/eigenvalue decomposition of the covariance matrix is:

where V contains the eigenvectors and D is the diagonal matrix of eigenvalues. 
The orthonormal basis we recover is precisely given by the eigenvectors, C=V (the 
principal components of the data). Additionally, the variance along each principal 
component direction is exactly the corresponding eigenvalue in D.
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