
CONCURRENT SYSTEMS
LECTURE 4
Prof. Daniele Gorla

1. 03 .

2025-LECTURE &

Semaphores
Object: entity with an implementation (hidden) and an interface (visible), made up of

a set of operations and a specification of the behaviour (usually specified in a
sequential way – e.g., as a set of legal executions).

Concurrent: if the object can be accessed by different processes

Semaphore: is a shared counter S accessed via primitives up and down s.t.:
1. It is initialized at s0 ≥ 0
2. It is always ≥ 0
3. up atomically increases S
4. down atomically decreases S, provided that it is not 0; otherwise, the invoking

processes is blocked and waits.
Invariant: S = s0 + #(S.up) – #(S.down)

Main use: prevent busy waiting (suspend processes that cannot perform down)
• Strong, if uses a FIFO policy for blocking/unblocking processes, weak otherwise
• Binary, if it is at most 1 (so, also up are blocking)

2 underlying objects:
• A counter, initialized at s0 that can also become negative
• A data structure (typicaly, a queue), initially empty, to store suspended proc’s

2

I concurrent objects

C for the counter to be strictly positive

(mutual exclusion as we have seek so fart

Semaphores: ideal implementation
S.down() := S.up() :=
 S.counter-- S.counter++
 if S.counter < 0 then if S.counter ≤ 0 then
 enter into S.queue activate a proc from S.queue
 SUSPEND return
 return

Remark 1: if S.counter ≥ 0, then this is the value of the semaphore; otherwise,
S.counter tells you how many processes are suspended in S

Remark 2: all operations are in MUTEX

3

> The absolute value
of it

Semaphores: actual implementation

Let t be a test&set register initialized at 0

S.down() := S.up() :=
 Disable interrupts Disable interrupts
 wait S.t.test&set() = 0 wait S.t.test&set() = 0
 S.counter-- S.count++
 if S.counter < 0 then if S.count ≤ 0 then
 enter into S.queue activate a proc from S.queue
 S.t ß 0 S.t ß 0
 Enable interrupts Enable interrupts
 SUSPEND return
 else S.t ß 0
 Enable interrupts
 return

4

see lecture 3

Yeste set object to ensure musex, but it could be with and hardware implementation seem so far

(Single) Producer/Consumer
It is a shared FIFO buffer of size k. Internal representation:
• BUF[0,…,k-1] : generic registers (not even safe) accessed in MUTEX
• IN/OUT : two variables pointing to locations in BUF to (circularly) insert/remove

items, both initialized at 0
• FREE/BUSY : two semaphores that count thew number of free/busy cells of BUF,

initialized at k and 0 respectively.

B.produce(v) := B.consume() :=
 FREE.down() BUSY.down()
 BUF[IN] ß v tmp ß BUF[OUT]
 IN ß (IN+1) mod k OUT ß (OUT+1) mod k
 BUSY.up() FREE.up()
 return return tmp

Remark: reading from/writing into the buffer can be very expensive! 5

one producer and one consumer printer example
V

Blocking if FREE becomes negative (same with ousy

I Since it is circular W

W

: "There is something to

Consumell

~ this act as a check to sea if there is

something to be consumed

Yor need two semaphore because you suspend only when the value of the semaphole is sale

(with a custom implementation I can use just a single semaphores

(Multiple) Producers/Consumers
Accessing BUF in MUTEX slows down the implementation
 à we’d like to have the possibility of parallel read/write from different cells
• 2 arrays FULL and EMPTY of atomic boolean registers, initialized at ff and tt, resp
• We have two extra semaphores SP and SC, both initialized at 1

B.produce(v) := B.consume() :=
 FREE.down() BUSY.down()
 SP.down() SC.down()
 while ¬EMPTY[IN] do while ¬FULL[OUT] do
 IN ß (IN+1) mod k OUT ß (OUT+1) mod k
 i ß IN o ß OUT
 EMPTY[IN] ß ff FULL[OUT] ß ff
 SP.up() SC.up()
 BUF[i] ß v tmp ß BUF[o]
 FULL[i] ß tt EMPTY[o] ß tt
 BUSY.up() FREE.up()
 return return tmp

6

-All ones

>All 22/es

Eventually an empty location
will be found

,
otherwise

L
↑he process would be

blocked in the
Semaphore

(Multiple) Producers/Consumers
Why is this solution wrong?

 B.produce(v) := B.consume() :=
 FREE.down() BUSY.down()
 SP.down() SC.down()
 i ß IN o ß OUT
 IN ß (IN+1) mod k OUT ß (OUT+1) mod k
 EMPTY[IN] ß ff FULL[OUT] ß ff
 SP.up() SC.up()
 BUF[i] ß v tmp ß BUF[o]
 FULL[i] ß tt EMPTY[o] ß tt
 BUSY.up() FREE.up()
 return return tmp

Hint: the problem is related to the relative speed of processes (e.g., consider very quick
producers and a few very slow consumers – e.g., the first consumer is very very slow)

7

* home : reason on that and find a counterexample

The Readers/Writers problem
• Several processes want to access a file
• Readers may simultaneously access the file
• At most one writer at a time
• Reads and writes are mutually exclusive

Remark: this generalizes the MUTEX problem (MUTEX = RW with only writers)

The read/write operations on the file will all have the following shape:

 conc_read() := conc_write() :=
 begin_read() begin_write()
 read() write()
 end_read() end_write()

8

Weak priority to Readers
• If a reader arrives during a read, it can surpass possible writers already suspended
• When a writer terminates, it activates the first suspended process, irrispectively of whether

it is a reader or a writer (so, the priority to readers is said «weak»)

GLOB_MUTEX and R_MUTEX semaphores init. at 1
R a shared register init. at 0

begin_read() := end_read() :=
 R_MUTEX.down() R_MUTEX.down()
 R++ R--
 if R = 1 then GLOB_MUTEX.down() if R = 0 then GLOB_MUTEX.up()
 R_MUTEX.up() R_MUTEX.up()
 return return

begin_write() := end_write() :=
 GLOB_MUTEX.down() GLOB_MUTEX.up()
 return return

9

Risk of starvation for the writers

L

↑ inthe last reader

C currently active readers
I

[

↓m the first reader

Strong priority to Readers
• When a writer terminates, it activates the first reader, if there is any, or the first writer,

otherwise.

GLOB_MUTEX, R_MUTEX and W_MUTEX semaphores init. at 1
R a shared register init. at 0

begin_read() := end_read() :=
 like before

begin_write() := end_write() :=
 W_MUTEX.down() GLOB_MUTEX.up()
 GLOB_MUTEX.down() W_MUTEX.up()
 return return

10

Weak priority to Writers
GLOB_MUTEX, PRIO_MUTEX, R_MUTEX and W_MUTEX semaphores init. at 1
R and W shared registers init. at 0

begin_read() := end_read() := (like weak priority)
 PRIO_MUTEX.down()
 R_MUTEX.down() R_MUTEX.down()
 R++ R--
 if R = 1 then GLOB_MUTEX.down() if R = 0 then GLOB_MUTEX.up()
 R_MUTEX.up() R_MUTEX.up()
 PRIO_MUTEX.up()
 return return

begin_write() := end_write() :=
 W_MUTEX.down() GLOB_MUTEX.up()
 W++ W_MUTEX.down()
 if W = 1 then PRIO_MUTEX.down() W--
 W_MUTEX.up() if W = 0 then PRIO_MUTEX.up()
 GLOB_MUTEX.down() W_MUTEX.up()
 return return

11

M

To prioritize the
writers

End of LectureI

Monitors
Semaphores are hard to use in practice because quite low level
Monitors provide an easier definition of concurrent objects at the level of Prog. Lang.
• A concurrent object that guarantees that at most one operation invocation at a time

is active inside it
• Internal inter-process synchronization is provided through conditions
• Conditions are objects that provide the following operations:
• wait: the invoking process suspends, enters into the condition’s queue, and

releases the mutex on the monitor
• signal: if no process is in the condition’s queue, then nothing happens. Otherwise

• Reactivates the first suspended process, suspends the signaling
process that however has a priority to re-enter the monitor (w.r.t.
processes that are suspended on conditions)

 à Hoare semantics
• Completes its task and the first process in the condition’s queue has

priority to enter the monitor (after that the signaling one terminates
or suspends)

 à Mesa semantics

12

Rendez-vous through monitors
Rendez-vous is a concurrent object associated to m control points (one for every

process involved), each of which can be passed when all processes are at their
control points.

The set of all control points is called barrier.

 monitor RNDV :=
 cnt ∈ {0,…,m} init at 0

 condition B

 operation barrier() :=
 cnt++
 if cnt < m then B.wait()
 else cnt ß 0
 B.signal()
 return

13

Implementation through semaphores
• A semaphore MUTEX init at 1 (to guarantee mutex in the monitor)
• For every condition C, a semaphore SEMC init at 0 and an integer NC init at 0 (to store and

count the number of suspended processes on the given condition)
• A semaphore PRIO init at 0 and an integer NPR init at 0 (to store and count the number of

processes that have performed a signal, and so have priority to re-enter the monitor)

1. Every monitor operation starts with MUTEX.down() and ends with
 if NPR > 0 then PRIO.up() else MUTEX.up()
2. C.wait() :=
 NC++
 if NPR > 0 then PRIO.up() else MUTEX.up()
 SEMC.down()
 Nc--
 return
3. C.signal() :=
 if NC > 0 then NPR++
 SEMC.up()
 PRIO.down()
 NPR--
 return

14

Monitors for Rs/Ws: Strong Priority to Readers
monitor RW_READERS :=
 AR, WR, AW, WW init at 0
 condition CR, CW

 operation begin_read() := operation end_read() :=
 WR++ AR--
 if AW≠0 then CR.wait() if AR+WR=0 then CW.signal()
 CR.signal()
 AR++
 WR--

 operation begin_write() := operation end_write() :=
 if (AR+WR≠0 OR AW≠0) then AW--
 CW.wait() if WR > 0 then
 AW++ CR.signal()

 else CW.signal()

Remark: possible starvation for writers!
15

Monitors for Rs/Ws: Strong Priority to Writers
monitor RW_WRITERS :=
 AR, WR, AW, WW init at 0
 condition CR, CW

 operation begin_read() := operation end_read() :=
 if WW+AW≠0 then CR.wait() AR--
 CR.signal() if AR=0 then CW.signal()
 AR++

 operation begin_write() := operation end_write() :=
 WW++ AW--
 if AR+AW≠0 then CW.wait() if WW > 0 then CW.signal()
 AW++ else CR.signal()

 WW--

Remark: possible starvation for readers!
16

Monitors for Rs/Ws: a fair solution
• After a write, all waiting readers are enabled
• During a read, new readers must wait if writers are waiting

monitor RW_FAIR :=
 AR, WR, AW, WW init at 0
 condition CR, CW

 operation begin_read() := operation end_read() :=
 WR++ AR--
 if WW+AW≠0 then CR.wait() if AR=0 then CW.signal()
 CR.signal()
 AR++
 WR--

 operation begin_write() := operation end_write() :=
 WW++ AW--
 if AR+AW≠0 then CW.wait() if WR > 0 then CR.signal()
 AW++ else CW.signal()

 WW--

17

Dining Philosophers (Dijkstra, 1965)

• N philosophers seated around a circular table
• There is one chopstick between each pair of
 philosophers
• A philosopher must pick up its two nearest
 chopsticks in order to eat
• A philosopher must pick up first one
 chopstick, then the second one, not both at
 once

PROBLEM: Devise a deadlock-free algorithm for allocating these limited resources
(chopsticks) among several processes (philosophers). 18

A non-deadlock-free solution
A simple algorithm for protecting access to chopsticks:
 each chopstick is governed by a mutual exclusion semaphore that prevents any

other philosopher from picking up the chopstick when it is already in use by
another philosopher

 semaphore chopstick[5] initialized to 1
 Philosopher(i) :=
 while(1) do
 chopstick[i].down()
 chopstick[(i+1)%N].down()
 // eat
 chopstick[(i+1)%N].up()
 chopstick[i].up()

Guarantees that no two neighbors eat simultaneously, i.e. a chopstick can only be used
by one its two neighboring philosophers
We can have deadlock if all philosophers simultaneously grab their right chopstick

19

Deadlock-free solutions
Break the symmetry of the system:
• All philosophers first grab their left-most chopstick, apart from one (e.g., the last

one) that first tries to grab the right-most one
• odd philosophers pick first left then right, while even philosophers pick first right

then left
• allow at most 4 philosophers at the same table when there are 5 resources

We shall also see a solution where symmetry is not broken
• allow a philosopher to pick up chopsticks only if both are free. This requires

protection of critical sections to test if both chopsticks are free before grabbing
them.

 à this will be easily implemented through a monitor

20

Solution 1
Give a number to forks and always try with the smaller
 à all philosophers first pick left and then right, except for the last one that
 first picks right and then left.

semaphores fork[N] all initialized at 1;
Philosopher(i) :=
 Repeat
 think;
 if (i < N-1) then
 fork[i].down();
 fork[i+1].down();
 else
 fork[0].down();
 fork[N-1].down();
 eat;

 fork[(i+1)%N].up();
 fork[i].up();

21

Solution 2
Odd philosophers first pick left and then right, even philosophers first pick right and

then left.

semaphores fork[N] all initialized at 1;
Philosopher(i) :=
 Repeat
 think;
 if (i % 2 == 0) then
 fork[i].down();
 fork[(i+1)%N].down();
 else
 fork[(i+1)%N].down();
 fork[i].down();
 eat;

 fork[(i+1)%N].up();
 fork[i].up();

22

Solution 3
Allow at most N-1 philosophers at a time sitting at the table

semaphores fork[N] all initialized at 1
semaphore table initialized at N-1

Philosopher(i) :=
 Repeat
 think;
 table.down();
 fork[i].down();

 fork[(i+1)%N].down();
 eat;

 fork[(i+1)%N].up();
 fork[i].up();

 table.up()
23

Solution 4
Pick up 2 chopsticks only if both are free
• a philosopher moves to his/her eating state only if both neighbors are not in their

eating states
 à need to define a state for each philosopher
• if one of my neighbors is eating, and I’m hungry, ask them to signal me when

they’re done
 à thus, states of each philosopher are: thinking, hungry, eating
 à need condition variables to signal waiting hungry philosopher(s)

This solutoin very well fits with the features of monitors!

24

Solution 4
monitor DP
 status state[N] all initialized at thinking;
 condition self[N];

 Pickup(i) :=
 state[i] = hungry;
 test(i);
 if (state[i] != eating) then self[i].wait;

 Putdown(i) :=
 state[i] = thinking;
 test((i+1)%N);
 test((i-1)%N);

test(i) :=
 if (state[(i+1)%N] != eating && state[(i-1)%N] != eating
 && state[i] == hungry)
 then state[i] = eating;
 self[i].signal();

25

