
CONCURRENT SYSTEMS
LECTURE 2
Prof. Daniele Gorla

Tournament-based algorithm
Even without contention, Peterson’s algorithm costs O(n2)

A first way to reduce this cost is by using a tournament of MUTEX between pairs of
processes:

By using Peterson’s algorithm
for 2 proc, a process wins after
⎡log2 n⎤ competitions, each of
constant cost.
 à O(log n)

2

A constant-time algorithm (for n processes)
The cost can be further reduced to O(1).
To begin, consider the following idea:

 Initialize Y at ⊥, X at any value (e.g., 0)
 lock(i) := unlock(i) :=

 X ß i Y ß ⊥
 if Y ≠ ⊥ then FAIL return

 else Y ß i

 if X = i then return

 else FAIL

Without contention, this requires 4 accesses to the registers for entering the CS
Problem:
• we don’t want the FAIL (that forces the process to invoke lock again and again), but

an implementation of lock that keeps the process inside this primitive until it wins
• It is possible to have an execution where nobody accesses its CS
 à if repeated for ever, enatils a deadlock

3

Fast MUTEX algorithm (by Lamport)
Initialize Y at ⊥, X at any value (e.g., 0)

lock(i) :=

* FLAG[i] ß up

 X ß i

 if Y ≠ ⊥ then FLAG[i] ß down

 wait Y = ⊥
 goto *

 else Y ß i

 if X = i then return

 else FLAG[i] ß down

 ∀j.wait FLAG[j] = down
 if Y = i then return

unlock(i) := else wait Y = ⊥
 Y ß ⊥ goto *

 FLAG[i] ß down

 return

4

MUTEX: if pi is in CS, then no other pj can simultaneaously be in CS

Proof:
How can pi enter its CS?

a) F[i]ßup Xßi Y=⊥ Yßi X=i CS
 ------|---------|--------|---------|----------|------------------------>
 For pj to enter its CS, it must
 find Y at ⊥, so it must read Y
 here
Where did pj write X?
 not here, otherwise pi would not have read i in X
So, it must have
written X here.
Hence, when pj reads X, it finds it different from j
 à it must wait for pi’s unlock before starting again
 à pj cannot be in CS while pi is

5

b) F[i]ßup Xßi Y=⊥ Yßi X≠i F[i]ßdown ∀k.F[k]=down Y=i CS

 ------|-----|------|------|------|-------|-------------|---------|----------->
 pj must read Y
 here
Where did pj write X?
 If here,
 like (a)
 So, let pj write X here
 - if pj reads X at j à it enters its CS, that however
 must be finished before
 à pj’s CS doesn’t overlap with pi’s one
 - otherwise, pj must have written Y before pi (since pi finds
 Y at i)
 à pj is blocked until pi unlocks

6

Deadlock freedom: let pi invoke lock

• If it eventually wins à √

• If it is blocked for ever, where can it be blocked?
1. In the second wait Y = ⊥
 à in this case, it read a value in Y different from i
 à there is a ph that wrote Y after pi
 à let us consider the last of such ph’s à it will eventually win à √
2. In the ∀j.wait FLAG[j]=down
 à this wait cannot block a process for ever
 - if pj doesn’t lock, it flag is down
 - if pj doesn’t find Y at ⊥, it puts its flag down
 - if pj doesn’t find X at j, it puts its flag down
 otherwise pj enters its CS and eventually unlocks (flag down) 7

3. In the first wait Y = ⊥
 à since pj read a value different from ⊥, there is at least one pk that
 wrote Y before (but has not yet unlocked)

 à if pk eventually enters its CS à √
 otherwise, it must be blocked for ever as well. Where?
 - In the second wait Y = ⊥: but then there exists a ph that eventually
 enters its CS (see point 1 above) à √

 - In the ∀j.wait FLAG[j]=down: this wait cannot block a process
 for ever (see point 2 above)

8

Fast MUTEX algorithm (by Lamport)
Without contention, this algorithm requires 5 accesses to the shared registers

It can be proved to satisfy MUTEX and deadlock freedom (you can easily built a scenario
where a process is starved)

 à we will see that every deadlock-free algorithm can be turned into a bounded
 bypass one (but with a quadratic bound…)

To sum up: with atomic R/W registers, we have
• With 2 processes, a O(1) algorithm that satisfies bounded bypass (with bound 1)
• With n processes:

• a O(n2) algorithm that satisfies starvation freedom
• a O(log n) algorithm that satisfies bounded bypass (with bound ⎡log2 n⎤)
• a O(1) algorithm that satisfies deadlock freedom

9

From deadlock freedom to bounded bypass
Let DLF be a deadlock free protocol for MUTEX.
We now want to turn it into a bounded bypass protocol for MUTEX

Round Robin algorithm
 à the name comes from a middle age habit for signing petitions, called
 Ruban Rond (that means «round ribbon»)
 à a circular way of signing, to hide the identity of the initiator

Initialize FLAG[i] to down (∀i) and TURN to any proc.id.

lock(i) := unlock(i) :=
 FLAG[i] ß up FLAG[i] ß down
 wait (TURN = i OR if FLAG[TURN] = down then
 FLAG[TURN] = down) TURN ß (TURN+1) mod n
 DLF.lock(i) DLF.unlock(i)
 return return

10

MUTEX for RR algorithm follows from the assumed MUTEX of DLF

Deadlock freedom of RR: if at least one process invokes RR.lock, then at least one
process enters the CS.

Proof:
Since DLF enjoys deadlock freedom, it suffices to prove that at least one process
invokes DLF.lock (i.e., at least one proc exists from its wait)

If TURN=k and pk invoked lock, then it finds TURN = k and exits its wait
Otherwise, any other process finds FLAG[TURN]=down and exits from its wait

11

Lemma 1: If TURN = i and FLAG[i] = up, then pi enters the CS in at most (n-1)
iterations

Proof:
OBS1: TURN changes only when FLAG[i] is down (i.e., after pi has completed

its CS)
OBS2: FLAG[i]=up à either pi is in its CS à √
 or pi is competing for its CS à it eventually invokes
 (or has already invoked)
 DLF.lock
OBS3: if pj invokes lock after that FLAG[i] is set, pj blocks in its wait

Let Y be the set of processes competing for the CS (i.e., suspended on DLF.lock)
• Because of OBS2, i ∈ Y
• Because of OBS3, once FLAG[i] is set, Y cannot grow anymore

12

• Because DLF is deadlock free, eventually one py ∈ Y wins
 If y=i à √
 otherwise, Y shrinks by one (the py that entered the CS). Indeed:
 because of OBS1, TURN (and FLAG[TURN]) don’t change
 à py cannot enter Y again
 We can iterate this reasoning and eventually pi will win
 à the worst case is when Y contains all proc’s and pi is the last winner

Lemma 2: If FLAG[i] = up, then TURN is set to i in at most (n-1)2 iterations
Proof:
If TURN=i when FLAG[i] is set à √
By Deadlock freedom of RR, at least one proc eventually unlocks
• If FLAG[TURN]=down, then TURN is increased; othw., by Lemma1 pTURN

wins in at most (n-1) iterations (and increases TURN)
• If now TURN=i then √; otherwise, we repeat the reasoning
The worst case is when TURN=(i+1) mod n when FLAG[i] is set

13

Bounded bypass of RR: if a process invokes RR.lock, then it enters the CS in at most
n(n-1) iterations

Proof:
• pi invokes lock à FLAG[i] is set to up
• By lemma 2, in (n-1)2 itrerations TURN is set to i
• By lemma 1, in (n-1) iterations pi enters the CS
• (n-1)2 + (n-1) = n(n-1)

14

