

CONCURRENT SYSTEMS LECTURE 2

Prof. Daniele Gorla

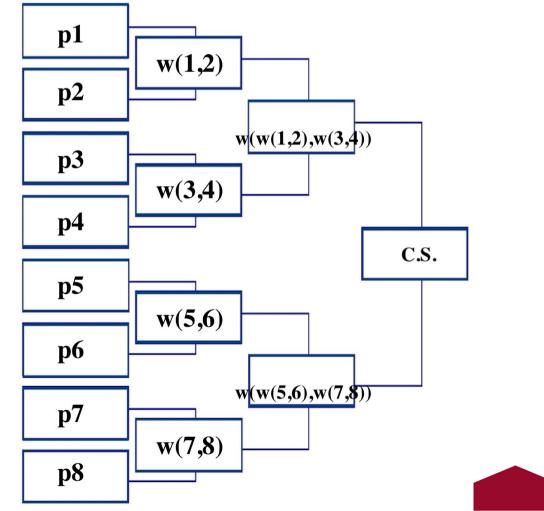
Tournament-based algorithm

Even without contention, Peterson's algorithm costs $O(n^2)$

A first way to reduce this cost is by using a tournament of MUTEX between pairs of processes:

By using Peterson's algorithm for 2 proc, a process wins after $\lceil \log_2 n \rceil$ competitions, each of constant cost.

 \rightarrow O(log *n*)



A constant-time algorithm (for *n* processes)

The cost can be further reduced to O(1).

To begin, consider the following idea:

```
Initialize Y at \bot, X at any value (e.g., 0)

lock(i) := unlock(i) :=

X \leftarrow i

if Y \neq \bot then FAIL return

else Y \leftarrow i

if X = i then return

else FAIL
```

Without contention, this requires 4 accesses to the registers for entering the CS Problem:

- we don't want the FAIL (that forces the process to invoke lock again and again), but an implementation of lock that keeps the process inside this primitive until it wins
- It is possible to have an execution where nobody accesses its CS

 \rightarrow if repeated for ever, enatils a deadlock

Fast MUTEX algorithm (by Lamport)

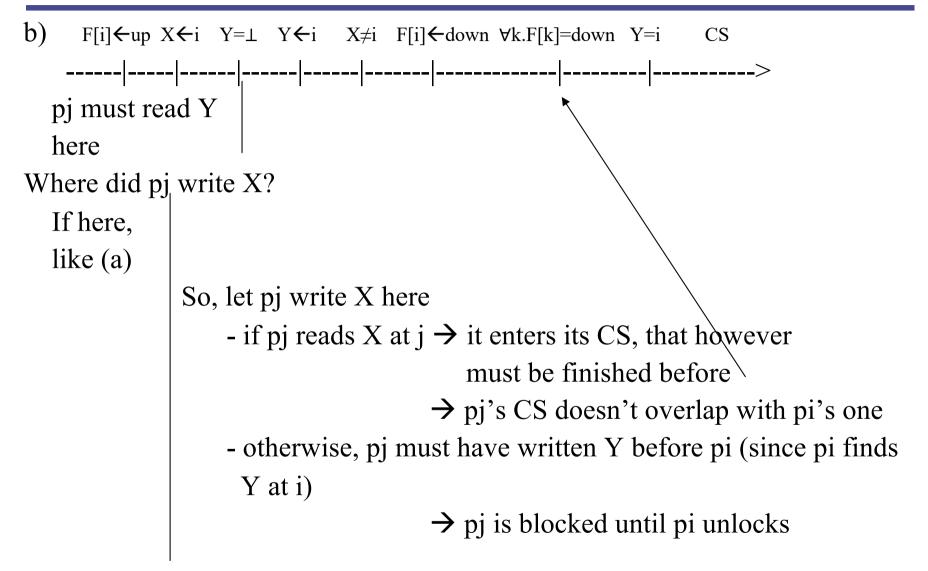
Initialize Y at \bot , X at any value (e.g., 0)

```
lock(i) :=
* FLAG[i] ← up
   x \leftarrow i
   if Y \neq \bot then FLAG[i] \leftarrow down
                   wait Y = \bot
                   goto *
              else Y \leftarrow i
                    if X = i then return
                               else FLAG[i] \leftarrow down
                                    \forall j.wait FLAG[j] = down
                                    if Y = i then return
unlock(i) :=
                                               else wait Y = \bot
   Y ← |
                                                    goto *
   return
```


<u>MUTEX</u>: if pi is in CS, then no other pj can simultaneaously be in CS

Proof: How can pi enter its CS?

 $F[i] \leftarrow up \quad X \leftarrow i \quad Y = \bot \quad Y \leftarrow i \quad X = i$ CS a) -----|------|------|-------|------> For pj to enter its CS, it must find Y at \perp , so it must read Y here Where did pj write X? not here, otherwise pi would not have read i in X So, it must have written X here. Hence, when pj reads X, it finds it different from j \rightarrow it must wait for pi's unlock before starting again \rightarrow pj cannot be in CS while pi is



Deadlock freedom: let pi invoke lock

- If it eventually wins $\rightarrow \sqrt{}$
- If it is blocked for ever, where can it be blocked?
 - 1. In the second wait $Y = \bot$

 \rightarrow in this case, it read a value in Y different from i

 \rightarrow there is a ph that wrote Y after pi

- \rightarrow let us consider the last of such ph's \rightarrow it will eventually win $\rightarrow \sqrt{}$
- 2. In the $\forall j$.wait FLAG[j]=down
 - \rightarrow this wait cannot block a process for ever
 - if pj doesn't lock, it flag is down
 - if pj doesn't find Y at \perp , it puts its flag down
 - if pj doesn't find X at j, it puts its flag down otherwise pj enters its CS and eventually unlocks (flag down)

- 3. In the first wait $Y = \bot$
 - → since pj read a value different from ⊥, there is at least one pk that wrote Y before (but has not yet unlocked)
 - \rightarrow if pk eventually enters its CS $\rightarrow \sqrt{}$

otherwise, it must be blocked for ever as well. Where?

- In the second wait $Y = \bot$: but then there exists a ph that eventually enters its CS (see point 1 above) $\rightarrow \checkmark$
- In the ∀j.wait FLAG[j]=down: this wait cannot block a process for ever (see point 2 above)

Fast MUTEX algorithm (by Lamport)

Without contention, this algorithm requires 5 accesses to the shared registers

It can be proved to satisfy MUTEX and deadlock freedom (you can easily built a scenario where a process is starved)

→ we will see that every deadlock-free algorithm can be turned into a bounded bypass one (but with a quadratic bound...)

To sum up: with atomic R/W registers, we have

- With 2 processes, a O(1) algorithm that satisfies bounded bypass (with bound 1)
- With *n* processes:
 - a $O(n^2)$ algorithm that satisfies starvation freedom
 - a O(log *n*) algorithm that satisfies bounded bypass (with bound $\log_2 n$)
 - a O(1) algorithm that satisfies deadlock freedom

From deadlock freedom to bounded bypass

Let DLF be a deadlock free protocol for MUTEX. We now want to turn it into a bounded bypass protocol for MUTEX

Round Robin algorithm

→ the name comes from a middle age habit for signing petitions, called *Ruban Rond* (that means «round ribbon»)

 \rightarrow a circular way of signing, to hide the identity of the initiator

```
Initialize FLAG[i] to down (\foralli) and TURN to any proc.id.
```

```
lock(i) := unlock(i) :=
FLAG[i] < up
wait (TURN = i OR
FLAG[TURN] = down)
DLF.lock(i)
return
unlock(i)
return
unlock(i)
return
unlock(i)
return<unlock(i)
return
unlock(i)
return
unlock(i)
return</pre>
```


MUTEX for RR algorithm follows from the assumed MUTEX of DLF

Deadlock freedom of RR: if at least one process invokes RR.lock, then at least one process enters the CS.

Proof:

Since DLF enjoys deadlock freedom, it suffices to prove that at least one process invokes DLF.lock (i.e., at least one proc exists from its wait)

If TURN=k and p_k invoked lock, then it finds TURN = k and exits its wait Otherwise, any other process finds FLAG[TURN]=down and exits from its wait

Lemma 1: If TURN = i and FLAG[i] = up, then pi enters the CS in at most (*n*-1) iterations

Proof:

OBS1: TURN changes only when FLAG[i] is down (i.e., after pi has completed its CS)

```
<u>OBS2:</u> FLAG[i]=up \rightarrow either pi is in its CS \rightarrow \sqrt{}
```

or pi is competing for its $CS \rightarrow$ it eventually invokes

(or has already invoked)

DLF.lock

OBS3: if pj invokes lock after that FLAG[i] is set, pj blocks in its wait

Let Y be the set of processes competing for the CS (i.e., suspended on DLF.lock)

- Because of OBS2, $i \in Y$
- Because of OBS3, once FLAG[i] is set, Y cannot grow anymore

• Because DLF is deadlock free, eventually one $py \in Y$ wins If $y=i \rightarrow \sqrt{}$

> otherwise, Y shrinks by one (the py that entered the CS). Indeed: because of OBS1, TURN (and FLAG[TURN]) don't change → py cannot enter Y again

We can iterate this reasoning and eventually pi will win

 \rightarrow the worst case is when Y contains all proc's and pi is the last winner

Lemma 2: If FLAG[i] = up, then TURN is set to i in at most $(n-1)^2$ iterations *Proof:*

If TURN=i when FLAG[i] is set $\rightarrow \sqrt{}$

By Deadlock freedom of RR, at least one proc eventually unlocks

- If FLAG[TURN]=down, then TURN is increased; othw., by Lemma1 p_{TURN} wins in at most (n-1) iterations (and increases TURN)
- If now TURN=i then $\sqrt{}$; otherwise, we repeat the reasoning

The worst case is when TURN=(i+1) mod n when FLAG[i] is set

Bounded bypass of RR: if a process invokes RR.lock, then it enters the CS in at most n(n-1) iterations

Proof:

- pi invokes lock \rightarrow FLAG[i] is set to up
- By lemma 2, in $(n-1)^2$ itrerations TURN is set to i
- By lemma 1, in (*n*-1) iterations pi enters the CS
- $(n-1)^2 + (n-1) = n(n-1)$