

• A number solve this	 What about data normalization? A number of different solutions have been proposed in literature to solve this problem. 		
Normal	ization Functions	 When minimum and maximum values are known, the normalization process is trivial. For this reason, we assumed to miss an exact estimate of 	
Min/Ma	$\mathbf{X} \qquad s_k' = \frac{s_k - \min}{\max - \min}$		
Z-score	$s_k' = \frac{s_k - \mu}{\sigma}$		
Median/M	fad $s'_{k} = \frac{s_{k} - median}{MAD}$	the maximum value	
Sigmoi	$d \qquad s'_k = \frac{1}{1 + ce^{-ks_k}}$	We chose the average value in its place, in order to stress normalization functions even	
Tanh	$s'_{k} = \frac{1}{2} \left[tanh\left(0.01 \frac{\left(s_{k} - E\left[s_{k}\right]\right)}{\sigma(s_{k})} \right) + \frac{1}{2} \left(\frac{s_{k}}{s_{k}} \right) \right]$	+1 more.	

The Z-score technique is the most widespread and uses arithmetic average and standard deviation of scores returned by the single subsystem.

μ represents the arithmetic average of scores and σ is the standard deviation.

Z-score does not guarantee a common interval for normalized values coming from different subsystems.

