
CONCURRENT SYSTEMS
LECTURE 12
Prof. Daniele Gorla

2

CCS
• Up to now, we have considered non-deterministic processes
• Two main features are missing for modeling a concurrent system:

• Simultaneous execution of proc’s
• Interprocess interaction

• Solutions adopted:
• Parallel composition, with interleaving semantics
• Producer/consumer paradigm

Given a set of names N (that denote events)
• a (∈ N) denotes consumption of event a
• "𝑎 (for a ∈ N) denotes production of event a
• a and "𝑎 are complementary actions: they let two parallel processes synchronize on the

event a
When two processes synchronize, an external observer has no way of understanding what

is happening in the system
à synchronization is not observable from the outside; it produces a special

‘silent’ action, that we denote with τ
The set of actions we shall consider is:

It is also useful to force some processes of the system to synchronize between them (without
the possibility of showing to the outside some actions)

The restriction operator P\a restricts the scope of name a to process P
(a is visible only from within P)

This is similar to local variables in a procedure of an imperative program

EXAMPLE

In the construction of the LTS we loose the consciousness of the parallel
à It is indeed possible, by having the new set of actions, to obtain the previous LTS
through the syntax we considered last class

The usefulness of the parallel is two-fold:
• it is the fundamental operator in concurrency theory

• it allows for a compact and intuitive writing of processes.

EXAMPLE (cont’d): (A|B)\b

The effect of the restriction on b is that we have deleted the transitions involving b
à hide all transitions labelled with b and "𝑏

Notice that the τ, even if it has been generated by synchronizing on b, it is still present
after applying the restriction on b

à the purpose of the τ is exactly to signal that a
synchronization has happened but to hide the event on
which the involved processed synchronized

In general, it is possible that whole states disappear upon restriction of some names: this
would be the case, e.g., if we consider the LTS arising from (A’ | B)\a,b:

Image Finiteness

Renamings

Prop.: a.P\a ∼ 0

Proof.
S = {(a.P\a , 0)} is a bisimulation

Which challenges can (a.P)\a have?
• a.P can only perform a (and become P)
• however, because of restriction, a.P\a is stuck

No challenge from a.P\a, nor from 0 à bisimilar!

QED

Prop.: "𝑎.P\a ∼ 0
Proof.
Similar.

Restrictions

Prop.: α.P+α.P+M ∼ α.P+M, where M denotes a sum Σi∈I βi.Pi
Proof.

S = { (α.P+α.P+M , α.P+M) }
Is it a bisimulation?
NO: the problem is that, for example:
• α.P+α.P+M –α–> P
• α.P+M –α–> P
• BUT (P,P) in general does NOT belong to S!

So, we can try with
S = { (α.P+α.P+M , α.P+M) } ∪ {(P,P)}

Is it a bisimulation?
NOT YET: P –β–> P’ (challenge and reply), but (P’,P’) is not in S

So, we try with
S = { (α.P+α.P+M , α.P+M) } ∪ Id

This is a bisimulation (try to prove!) and contains the desired pair.

QED

Idempotency of Sum

EXAMPLE: Semaphores
An n-ary semaphore S(n)(p,v) is a process used to ensure that there are no more than n

istances of the same activity concurrently in execution.
An activity is started by action p and is terminated by action v.

The specification of a unary semaphore is the following:

The specification of a binary semaphore is the following:

If we consider S(2) as the specification of the expected behavior of a binary semaphore and
S(1) | S(1) as its concrete implementation, we can show that

S(1) | S(1) ∼ S(2)
This means that the implementation and the specification do coincide

To show this equivalence, it suffices to show that relation

is a bisimulation

One of the main aims of an equivalence notion between processes is to make equational
reasonings of the kind: “if P and Q are equivalent, then they can be interchangeably
used in any execution context”

This feature on an equivalence makes it a congruence
Not all equivalences are necessarily congruences (even though most of them are)
To properly define a congruence, we first need to define an execution context, and then

what it means to run a process in a context. Intuitively:

where C is a context (i.e., a process with a hole ☐), P is a process, and C[P] denotes
filling the hole with P

Example: if C = (☐ | Q)\a, then C[P] = (P | Q)\a

Congruence

