
CONCURRENT SYSTEMS
LECTURE 8
Prof. Daniele Gorla

Enhancing Liveness Properties
For MUTEX-based concurrency we saw that a weak liveness property (deadlock freedom) can be
always enhanced to a stronger one (bounded bypass)

We want to do the same in the framework of MUTEX-free concurrency

Contention manager: is an object that allows progress of processes by providing contention-free
periods for completing their invocations. It provides 2 operations:
• need_help(i) : invoked by pi when it discovers that there is contention
• stop_help(i) : invoked by pi when it terminates its current invocation

Enriched implementation: when a process realizes that there is contention, it invokes need_help;
when it completes its current operation, it invokes stop_help.

REMARK: this is different from lock/unlock because in this framework we allow (fail-stop) failures,
that can also happen during the contention-free period
 à the contention-free period always terminates

PROBLEM: to distinguish a failure from a long delay, we need objects called failure detectors, that
provide processes information on the failed processes of the system.
 à according to the type/quality of the info, several F.D.s can be defined

2

From obstruction-freedom to non-blocking
Eventually restricted leadership: given a non-empty set of process IDs X, the failure

detector !X provides each process a local variable ev_leader(X) such that
1. (Validity) ev_leader(X) always contains a process ID
2. (Eventual leadership) Eventually, all ev_leader(X) of all non-crashed processes of

X for ever contain the same process ID, that is one of them

REMARK: the moment in which all variables contain the same leader is unknown

NEED_HELP[1..n] : SWMR atomic R/W boolean registers init at false

need_help(i) := stop_help(i) :=
 NEED_HELP[i] ß true NEED_HELP[i] ß false
 repeat
 X ß {j : NEED_HELP[j]}
 until ev_leader(X) = i 3

Thm.: the contention manager just seen transforms an obstr.-free implementation
 into a non-blocking enriched implementation.

Proof:
By contr., ∃ # s.t. ∃ many (> 0) op.’s invoked concurrently that never terminate
Let Q be the set of proc.’s that performed these invocations.
- By enrichment, eventually NEED_HELP[i]=T (∀ i ∈ Q) forever
- Since crashes are fail-stop, eventually NEED_HELP[j] is no longer modified (∀ j ∉ Q)
 à ∃ #’ ≥ # when all proc.’s in Q compute the same X

OBS.: Q ⊆ X (it is possible that pj sets NEED_HELP[j] and then fails)

By def. of !X , ∃ #’’ ≥ #’ s.t. all proc.’s in Q have the same ev_leader(X)
 à the leader belongs to Q, since it cannot be failed
 à this is the only process allowed to proceed
 à because run in isolation, it eventually terminates (bec. of obstr-freedom)

On implementing !
It can be proved that there exists no wait-free implementation of ! in an asynchronous

system with atomic R/W registers and any number of crashes
 à crashes are indistinguishable from long delays
 à need of timing constraints

1. ∃ time #1, time interval (and correct process pL s.t. after #1 every two consecutive
writes to a specific SWMR atomic R/W register by pL are at most (time units
apart one from the other

2. Let t be an upper bound on the number of possible failing processes and f the real
number of processes failed (hence, 0 ≤ f ≤ t ≤ n-1, with f unknown and t known in
advance).

 Then, there are at least t–f correct processes different from pL with a timer s.t.
 ∃ time #2 ∀ time interval) , if their timer is set to) after #2 it expires at least
 after)

REMARK: #1, #2, (and pL are all unknwon

5

On implementing !
IDEA:
• PROGRESS[1..n] is an array of SWMR atomic registers used by proc’s to signal

that they’re alive
 à pi regularly increases PROGRESS[i]
 à pL eventually increases PROGRESS[L] every (time units at the latest
• pi suspects pj if pi doesn’t see any progress of pj after a proper time interval (to be

guessed) set in its timer
• The leader is the least suspected process, or the one with smallest/biggest ID among

the least suspected ones (if there are more than one)
 à this changes in time, but not forever

Guessing the time duration for suspecting a process:
• SUSPECT[i,j] = #times pi has suspected pj
• For all k, take the t+1 minimum values in SUSPECT[1..n , k]
• Sum them, to obtain Sk

• The interval to use in the timers is the minimum Sk

 à it can be proved that this eventually becomes ≥ (

6

From obstruction-freedom to wait-freedom
Eventually perfect: the failure detector ♢P provides each process pi a local variable

suspectedi such that
1. (Eventual completeness) Eventually, suspectedi contains all the indexes of crashed

processes, for all correct pi
2. (Eventual accuracy) Eventually, suspectedi contains only indexes of crashed

processes, for all correct pi

Def.: FD1 is stronger than FD2 if there exists an algorithm that builds FD2 from
instances of FD1 and atomic R/W registers

Prop.: ♢P is stronger than !X .
Proof:
Forall i
• i ∉ X à ev_leaderi(X) is any ID (and may change in time)
• i ∈ X à ev_leaderi(X) = min((Π \ suspectedi) ∩ X)
 where Π denotes the set of all proc. IDs

7

From obstruction-freedom to wait-freedom
!X is NOT stronger than ♢P (so, ♢P is strictly stronger).

One possible idea (WRONG!) is
• Run !Π that eventually fixes pℓ1

• After this, run !Π\{ℓ1} that eventually fixes pℓ2

• After this, run !Π\{ℓ1, ℓ2} that eventually fixes pℓ3

• …
This eventually calculates the set of all non-crashed proc.’s
 à PROBL.: we cannot know when a leader is elected (permanently)

The formal proof consists in showing that, if ! was stronger than ♢P, then consensus
would be possible in an asynchronous system with crashes and atomic R/W registers.

8

From obstruction-freedom to wait-freedom

We assume a weak timestamp generator, i.e. a function such that, if it returns a positive value t to
some process, only a finite number of invocations can obtain a timestamp smaller than or equal to t

TS[1..n] : SWMR atomic R/W registers init at 0

need_help(i) :=
 TS[i] ß weak_ts()
 repeat
 competing ß {j : TS[j]≠0 ∧ j ∉ suspectedi}
 ⟨t,j⟩ ß min{⟨TS[x],x⟩ | x ∈ competing}
 until j = i

stop_help(i) :=
 TS[i] ß 0

9

Thm.: the contention manager just seen transforms an obstr-free implementation
 into a wait-free enriched implementation.
Proof:
By contr., ∃ an invocation of a correct pi that never terminates; let ti be its timestamp
 à choose the minimum of such ⟨ti,i⟩
By constr. of weak_ts(), the set of invocations smaller than ⟨ti,i⟩ (call it I) is finite
• For every invocation ∈ I from a process pj that crashes during its execution
 à pi will eventually and forever suspect pj (i.e., j ∈ suspectedi)
 à eventually, j ∉ competingi and, thus, won’t prevent pi from proceeding
• Since ⟨ti,i⟩ is the minimum index of a non-terminating invocation
 à all invocations ∈ I of correct processes terminate
 à if such processes invoke need_help() again, they obtain greater indexes
 à eventually I gets emptied
Since pi is correct, eventually (for all pk correct):
• i ∉ suspectedk
• ⟨ti,i⟩ = min{⟨TS[x],x⟩ | x \in competingk}
Hence, the invocation with index ⟨ti,i⟩ will eventually have exclusive execution
 à because of obstr.-freedom it eventually terminates

OBS: since non-blocking implies obstr.-fr., the Thm holds also for non-blocking impl.

On implementing ♢P:
• Every non-failed process has eventually an upper bound on the write delay
• By properly setting timers, eventually crashed processes are distinguished from the

non-crashed ones by looking at the suspicions: for the crashed ones, this numbers
increases indefinitely; for non-crashed ones, some reset eventually happens.

11

