

CONCURRENT SYSTEMS LECTURE 6

Prof. Daniele Gorla

Atomicity

We have a set of n sequential processes p1,...,pn that access m concurrent objects X1,...,Xm by invoking operations of the form Xi.op(args)(ret).

When invoked by pj, the invocation Xi.op(args)(ret) is modeled by two events: inv[Xi.op(args) by pj] and res[Xi.op(ret) to pj].

A <u>history</u> (or <u>trace</u>) is a pair $\hat{H} = (H, <_H)$ where H is a set of events and $<_H$ is a total order on them

The semantics (of systems and/or objects) will be given as a set of traces.

A history is <u>sequential</u> if it is of the form inv res inv res ... inv res inv inv inv ... (where every res is the return operation of the immediately preceeding inv)

 \rightarrow a sequential history can be represented as a sequence of operations

A history is **<u>complete</u>** if every inv is eventually followed by a corresponding res, **<u>partial</u>** otherwise.

Linearizability

<u>Def.</u>: a complete history \hat{H} is <u>linearizable</u> if there exists a sequential history \hat{S} s.t.

- 1. $\forall X . \hat{S}|_X \in \text{semantics}(X)$
- 2. $\forall \mathbf{p} \cdot \hat{H}|_{\mathbf{p}} = \hat{S}|_{\mathbf{p}}$
- 3. If res[op] \leq_{H} inv[op'], then res[op] \leq_{S} inv[op']

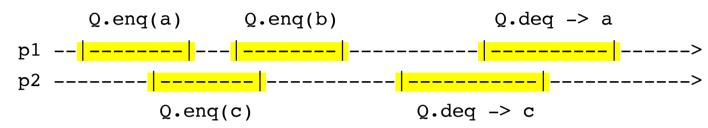
Given an history \hat{K} , we can define a binary relation on events \rightarrow_{K} s.t. (op, op') $\in \rightarrow_{K}$ if and only if res[op] \leq_{K} inv[op']. We write op \rightarrow_{K} op' for denoting (op, op') $\in \rightarrow_{K}$. Hence, condition 3 of the previous Def. requires that $\rightarrow_{H} \subseteq \rightarrow_{S}$.

This corresponds to the history

inv[Q.enq(a) by p1] inv[Q.enq(c) by p2] res[Q.enq(a) to p1] inv[Q.enq(b) by p1] res[Q.enq(c) by p2] res[Q.enq(b) by p1] inv[Q.deq() by p2] inv[Q.deq() by p2] res[Q.deq(a) to p2] res[Q.deq(b) to p1] It can be linearized as [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.enq(c)() by p2] [Q.deq()(a) to p2] [Q.deq()(b) to p1]

Linearizability (cont.'d)

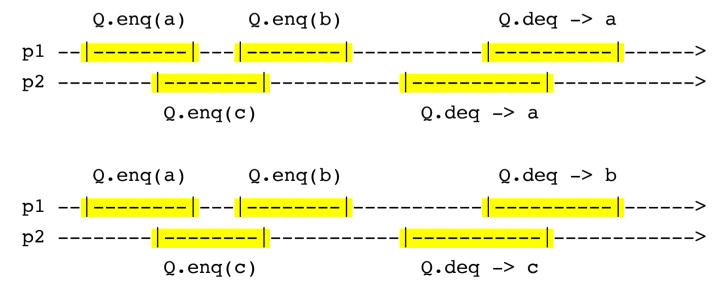
Now consider



The corresponding history can still be linearized as

[Q.enq(c)() by p2] [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.deq()(c) to p2] [Q.deq()(a) to p1]

By contrast, the following are not linearizable histories:



<u>**Thm (compositionality):**</u> \hat{H} is linearizable if $\hat{H}|_X$ is linearizable, for all X involved in H *Proof:*

For all X, let \hat{S}_X be a linearization of $\hat{H}|_X$

 $\rightarrow \hat{S}_X$ defines a total order on the operations on X (call it \rightarrow_X)

Let \rightarrow denote $\rightarrow_{\mathrm{H}} \cup U_{\mathrm{X\,in\,H}} \rightarrow_{\mathrm{X}}$

(recall that a relation is a set of pairs, so here you take the union of all pairs of \rightarrow_H and of all \rightarrow_X)

We now show that \rightarrow is acyclic.

- It cannot have cycles with 1 edge (i.e., self loops): indeed, if op → op, this would mean that res(op) < inv (op)
- 2. It cannot have cycles with 2 edges: by contr., assume that $op \rightarrow op' \rightarrow op$
 - both arrows cannot be \rightarrow_{H} nor \rightarrow_{X} (for some X), otw. such relations were cyclic
 - it cannot be that one is \rightarrow_X and the other \rightarrow_Y (for some $X \neq Y$), otw. op/op' would be on 2 different objects

Hence, it must be op \rightarrow_X op' \rightarrow_H op (or vice versa)

Then, op' \rightarrow_{H} op means that res(op') \leq_{H} inv(op)

Since \hat{S}_X is a linearization of $\hat{H}|_X$ and op/op' are on X, this implies res(op') <_X inv(op), i.e., that op' \rightarrow_X op \rightarrow_X would be cyclic

3. It cannot have cycles with more than 2 edges: by contr., consider a shortest cycle

- adjacent edges cannot belong to the same order (otw. the cycle would be shortable, because of transitivity)
- adjacent edges cannot belong to orders on different objects Hence, at least one \rightarrow_X exists, and it must be between two \rightarrow_H , i.e.:

$$op1 \longrightarrow_{H} op2 \longrightarrow_{X} op3 \longrightarrow_{H} op4$$

is part of the shortest cycles chosen (possibly with op4=op1).

op1 →_H op2 means that res(op1) <_H inv(op2)
op2 →_X op3 entails that inv(op2) <_H res(op3)
Indeed, if not, we would have that res(op3) <_H inv(op2), since <_H is
a total order → we would have a cycle of length 2
$$\checkmark$$

op3 →_H op4 means that res(op3) <_H inv(op4)

By transitivity of \leq_{H} , we would then have that res(op1) \leq_{H} inv(op4), i.e. op1 \rightarrow_{H} op4 \rightarrow in contradiction with having chosen a shortest cycle

Every DAG admits a topological order (i.e., a total order of its nodes that respects the edges)

 \rightarrow Let \rightarrow ' denote a topological order for \rightarrow

Let us then define a linearization of \hat{H} as follows:

 $\hat{S} = inv(op1) res(op1) inv(op2) res(op2) \dots$ whenever $op1 \rightarrow 'op2 \rightarrow '\dots$

 \hat{S} is clearly sequential; moreover:

1. For all X, $\hat{S}|_{X} = \hat{S}_{X}$ (\in semantics(X)). Indeed:

 $- \langle_{\hat{S}_X} = \longrightarrow_X \subseteq \longrightarrow|_X \subseteq \longrightarrow'|_X = \longrightarrow_{\hat{S}|X} = \langle_{\hat{S}|X}$ - Since $\langle_{\hat{S}_X}$ and $\langle_{\hat{S}|X}$ are total orders on the same set of events (i.e., A|_X),

they must coincide

2. For all p,
$$\widehat{H}|_{p} = inv(op1_{p}) res(op1_{p}) inv(op2_{p}) res(op2_{p})...$$
 (bec. p is sequential)
= $\widehat{S}|_{p}$ (bec. $op1_{p} \rightarrow_{H} op2_{p} \rightarrow_{H}... and \rightarrow_{H} \subseteq \rightarrow$ ')

3. $\rightarrow_{\mathrm{H}} \subseteq \rightarrow \subseteq \rightarrow' = \rightarrow_{\mathrm{S}}$

Sequential consistency

Let us define $op \rightarrow_{proc} op'$ to hold whenever there exists a process p that issues both operations, with res[op] happening before inv[op'].

Def.: a complete history \widehat{H} is sequentially consistent if there exists a sequential history \widehat{S} s.t.1. $\forall X . \widehat{S}|_X \in \text{semantics}(X)$ (like linearizability)2. $\forall p . \widehat{H}|_p = \widehat{S}|_p$ (like linearizability)3. $\rightarrow_{\text{proc}} \subseteq \rightarrow_S$ (in place of $\rightarrow_H \subseteq \rightarrow_S$)

This is a more generous notion than linearizability.

EXAMPLE: Let \hat{H} be [Q.enq(a)() by p1] [Q.enq(b)() by p2] [Q.deq()(b) to p2]

→ not linearizable: ■ the only possible linearization of \hat{H} is \hat{H} itself (because of cond.3)

■ it violates the semantics of a queue (cond.1)

→ it is sequentially consistent, by swapping the first two actions, i.e. by considering Ŝ to be [Q.enq(b)() by p2] [Q.enq(a)() by p1] [Q.deq()(b) to p2]

Alternatives to Atomicity (1)

The problem with sequential consistency is that it is NOT compositional.

EXAMPLE

Consider the following two processes:

- p1: Q.enq(a); Q'.enq(b'); Q'.deq() \rightarrow b'
- p2: Q'.enq(a'); Q.enq(b); Q.deq() \rightarrow b

In isolation, both processes are sequentially consistent

However, no total order on the previous 6 operations respects the semantics of a queue:

- If p1 receives b' from Q'.deq, we have that Q'.enq(a') must arrive after Q'.enq(b')
- To respect $\rightarrow_{\text{proc}}$, also the remaining behaviour of p2 must arrive after
- Hence, Q.enq(a) arrived before Q.enq(b) and so it is not possible for p2 to receive b from its Q.deq

Hence, we have two histories that are sequentially consistent but whose composition cannot be sequentially consistent \rightarrow no compositionality!

Alternatives to Atomicity (2)

<u>Serializability</u> (typical notion in databases)

- We now have transactions instead of processes
- Consequently, we have also two other kinds of events: abort(t) and commit(t)
- The constraint is that, in every history, we have at most one of these events for every transaction; if the history is complete, we must have exactly one of these events for every transaction
- A sequantial history is formed by committed transactions only

<u>Def.</u>: a complete history \hat{H} is <u>serializable</u> if there exists a sequential history \hat{S} s.t.

- 1. $\forall X . \hat{S}|_X \in \text{semantics}(X)$ (*like linearizability*)
- 2. $S = \{e \in H : e \in t \in committedTrans(\widehat{H})\}$
- 3. $\rightarrow_{\text{trans}} \subseteq \rightarrow_{\text{S}}$ (where $\rightarrow_{\text{trans}}$ is defined like $\rightarrow_{\text{proc}}$ in seq. cons.)

Again, this is a more generous notion than linearizability, but it is not compositional

 \rightarrow consider the previous two examples, where instead of processes, you have transactions

