

CONCURRENT SYSTEMS LECTURE 13

Prof. Daniele Gorla

The equivalence studied up to now is quite discriminating, in the sense that it distinguishes, for example, τ .P and τ . τ .P

- If an external observer can count the number of non-observable actions (i.e., the τ 's), this distinction makes sense;
- If we assume that an observer cannot access any internal information of the system, then this distinction is not acceptable.

The idea of the new equivalence is to ignore (some) τ 's:

- a visible action must be replied to with the same action, possibly together with some internal actions
- an internal action must be replied to by a (possibly empty) sequence of internal actions.

 $P \Longrightarrow P'$ if and only if there exist P_0, P_1, \ldots, P_k (for $k \ge 0$) such that $P = P_0 \xrightarrow{\tau} P_1 \xrightarrow{\tau} \ldots \xrightarrow{\tau} P_k = P'$.

relation $\stackrel{\widehat{\alpha}}{\Longrightarrow}$:

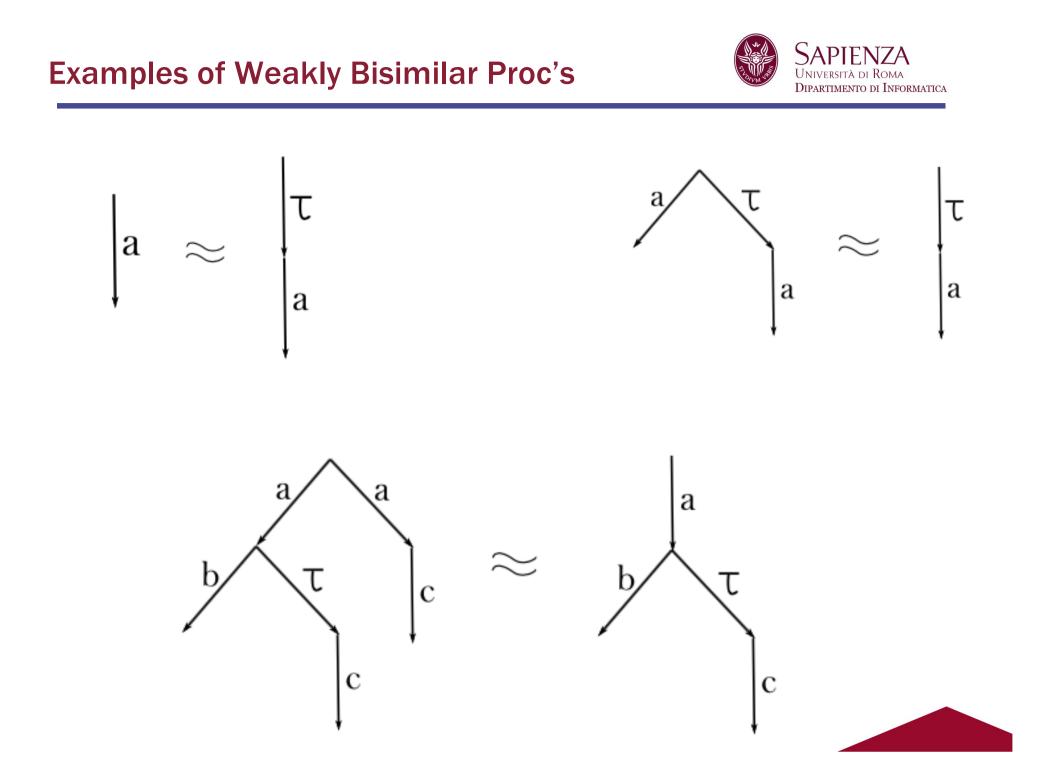
- if $\alpha = \tau$ then $\stackrel{\widehat{\alpha}}{\Longrightarrow} \triangleq \Longrightarrow$;
- otherwise $\stackrel{\widehat{\alpha}}{\Longrightarrow} \triangleq \implies \stackrel{\alpha}{\longrightarrow} \implies$.

S is a weak simulation if and only if $\forall (p,q) \in S \ \forall p \xrightarrow{\alpha} p' \exists q' \text{ s.t. } q \xrightarrow{\widehat{\alpha}} q'$ and $(p',q') \in S$. A relation S is called weak bisimulation if both S and S^{-1} are weak simulations. We say that p and q are weakly bisimilar, written $p \approx q$, if there exists a weak bisimulation S such that $(p,q) \in S$.

Proposition

1. \approx is an equivalence. 2. \approx is a weak bisimulation.

3. \approx is a congruence. 4. $\sim \subset \approx$.



Theorem 4.3. Given any process P and any sum M, N, then:

- 1. $P \approx \tau . P$;
- 2. $M + N + \tau N \approx M + \tau N;$
- 3. $M + \alpha P + \alpha (N + \tau P) \approx M + \alpha (N + \tau P)$.

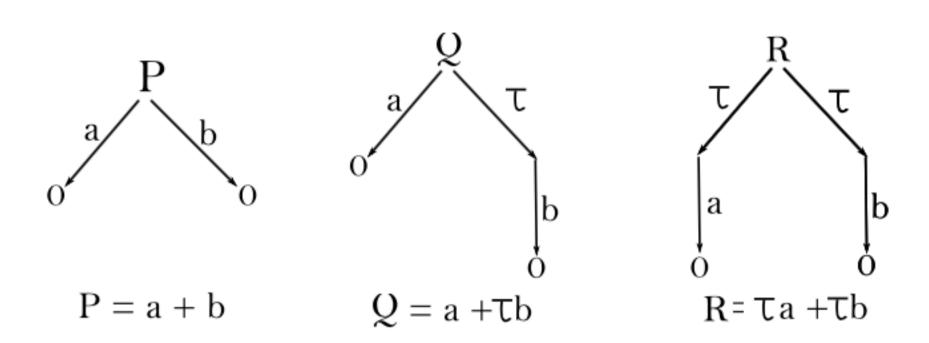
Proof.

take the symmetric closure of the following relations, that can be easily shown to be weak simulations:

1.
$$S = \{(P, \tau.P)\} \cup Id$$

2. $S = \{(M + N + \tau.N, M + \tau.N)\} \cup Id$
3. $S = \{(M + \alpha.P + \alpha.(N + \tau.P), M + \alpha.(N + \tau.P))\} \cup Id$

 \square



There exists no weak bisimulation S that contains (P, Q). By contr. suppose that a bisimulation exists Since $Q \neg \tau \rightarrow b.0$, there must exist a P' such that $P \Rightarrow P$ and $(P,b.0) \in S$ The only P that satisfies $P \Rightarrow P'$ is P itself hence it should be $(P,b.0) \in S$ Contradiction: P can perform a whereas b.0 cannot !!

Similarly, P/R and Q/R are NOT weakly bisimilar

EXAMPLE: Factory

A factory can handle three kinds of works: easy (E), medium (M) and difficult (D). An activity of the factory consists in receiving in input a work (of any kind) and in producing in output a manifactured work.

The given specification of an activity is the following:

$$\begin{array}{rcl} A & \triangleq & i_E.A' + i_M.A' + i_D.A' \\ A' & \triangleq & \overline{o}.A \end{array}$$

where actions i_E , i_M , i_D represent they input of an easy/medium/difficult work, and \bar{o} represents the production of an output.

The factory is given by the parallel composition of two activities:

$$Factory \triangleq A|A|$$

- A possible implementation of this specification is obtained by having two workers that perform in parallel different kinds of work.
 - For easy works, they don't use any machinery;
 - For medium works, they can use either a special or a general machine;
 - For difficult works, they have to use the special machine.

There is only one special and only one general machine that the workers have to share. Hence, the specification of a worker is:

$$W \triangleq i_F.W_E + i_M.W_M + i_D.W_D \qquad S \triangleq rs.S'$$

$$W_E \triangleq \overline{o}.W \qquad S' \triangleq ls.S$$

$$W_M \triangleq \overline{rg}.\overline{lg}.W_E + \overline{rs}.\overline{ls}.W_E \qquad G \triangleq rg.G'$$

$$W_D \triangleq \overline{rs}.\overline{ls}.W_E \qquad G' \triangleq lg.G$$

where *rg* and *rs* are used to require the general/special machine, *lg* and *ls* are used to leave the general/special machine, and S and G implement a semaphore on the two different machines.

The resulting system is given by:

 $Workers \triangleq (W \mid W \mid G \mid S) \setminus_{\{rg, rs, lg, ls\}}$

We now want to show the following weak bisimilarity:

$Factory \approx Workers$

i.e., that the specification and the implementation of the factory behave the same (apart from internal actions)

Let N denote $\{rg, rs, lg, ls\}$ and $x, y \in \{E, M, D\}$ We can prove that the following relation is a weak bisimulation:

$$\begin{split} R &= \{ \quad (A|A, (W|W \mid G|S)\backslash_N) , \ (A|A', (W|W_x \mid G|S)\backslash_N) , \\ &\quad (A|A', (W|\overline{lg} \cdot W_E \mid G'|S)\backslash_N) , \ (A|A', (W|\overline{ls} \cdot W_E \mid G|S')\backslash_N) , \\ &\quad (A'|A', (W_y|W_x \mid G|S)\backslash_N) , \ (A'|A', (W_y|\overline{lg} \cdot W_E \mid G'|S))\backslash_N , \\ &\quad (A'|A', (W_y|\overline{ls} \cdot W_E \mid G|S'))\backslash_N , \ (A'|A', (\overline{lg} \cdot W_E|\overline{ls} \cdot W_E \mid G'|S')\backslash_N) \ \} \end{split}$$

The previous relation is a family of relations:

- 3 pairs of the second form (one for every x),
- 9 pairs of the fifth form (one for every x and y),
- 3 pairs of the sixth form, and
- 3 pairs of the seventh form.
- Furthermore, we should also consider commutativity of parallel in pairs of the second, third, fourth, sixth, seventh and eighth form.

Thus, R is actually made up of 1+6+2+2+9+6+6+2 = 34 pairs.

EXAMPLE: Lottery

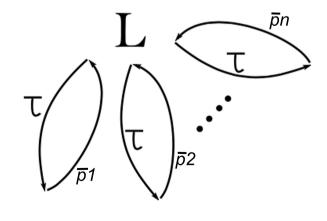
We want to model a lottery L where we can select any ball from a bag that contains n balls; after every extraction, the extracted ball is put back in the bag and the procedure is repeated.

The specification is:

$$L \triangleq \tau.\bar{p}_1L + \tau.\bar{p}_2.L + \ldots + \tau.\bar{p}_n.L$$

where τ 's represent ball extractions and $\bar{p_i}$ is the action that communicates the value of the extracted ball.

The LTS resulting from this specification is:



We now build a system with n components, one for every ball.

Every component can be in three states:

- A (waiting for being habilitated to extraction)
- B (habilitated, with the possibility of being extracted or of habilitating the next component)
- C (extracted, waiting to externally communicate its value and start the process again):

$$A_i = a_i.B_i$$
 $B_i = \tau.C_i + \bar{a}_{(i \mod n)+1}.A_i$ $C_i = \bar{p}_i.B_i$

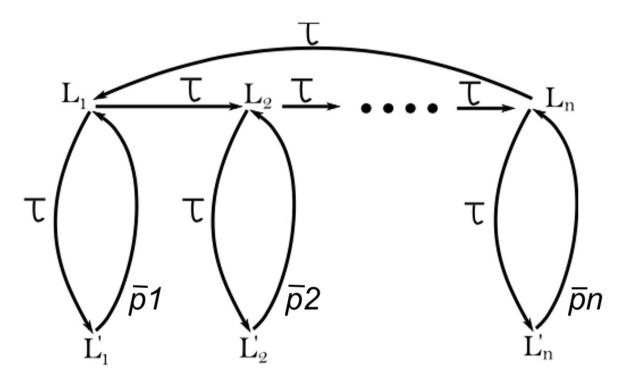
Actions a's create a sort of token ring:

- the token is passed among the balls (only the ball with the token can be extracted)
- the ball with the token can also nondeterministically decide to pass the token to the next ball of the ring
- the token is initially given to the first ball (this choice is not mandatory: every ball can start with the token)

the system is

$$Impl \triangleq (B_1|A_2|\ldots|A_n) \setminus_{\{a_1,\ldots,a_n\}}$$

that generates the LTS



where

$$L_{i} = (A_{1} | \dots | A_{i-1} | B_{i} | A_{i+1} | \dots | A_{n}) \setminus_{\{a_{1}, \dots, a_{n}\}}$$

$$L'_{i} = (A_{1} | \dots | A_{i-1} | C_{i} | A_{i+1} | \dots | A_{n}) \setminus_{\{a_{1}, \dots, a_{n}\}}$$

We now want to show that this system implementation is correct with respect to the given specification, i.e.

$L\approx Impl$

We shall prove a more general result, i.e. that, for every i = 1, ..., n, we have that

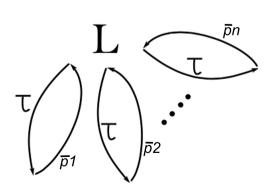
 $L \approx L_i$

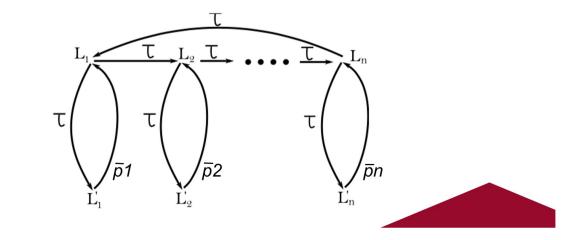
Since $Impl = L_1$, this suffices to conclude.

we prove that

$$\Re \triangleq \{ (L, L_i) \mid 0 < i \le n \} \cup \{ (\bar{p}_i . L, L'_i) \mid 0 < i \le n \}$$

and \Re^{-1} are weak simulations.





- We have a set of processes Pi (for $0 < i \le n$) that must repeatedly perform at certain task.
- A scheduler has to guarantee that processes cyclically start their task, starting from P1.
- Executions of different processes may overlap but the scheduler has to guarantee that every process Pi completes his performance before starting another one (with the same index i).
- Every process Pi requires to start its task via action a_i and signals to the scheduler its termination via action b_i
 - \rightarrow the scheduler has to guarantee that the a's cyclically occur, starting with a1, and, for every i, the a_i's must alternate with the b_i's, starting with a_i

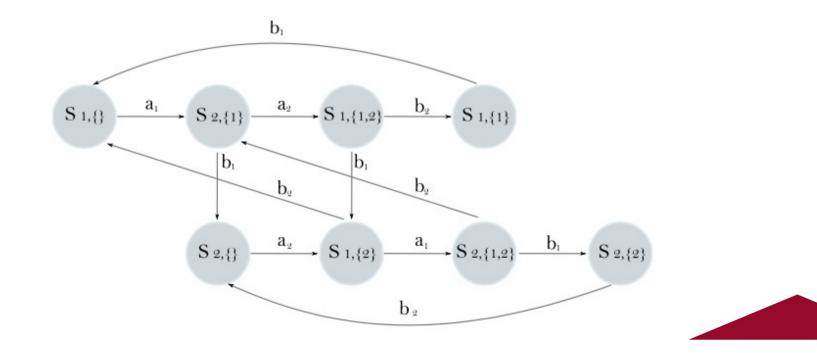
The specification of the scheduler is:

$$S_{i,X} = \begin{cases} \Sigma_{j \in X} b_j . S_{i,X-\{j\}} & \text{if } i \in X \\ a_i . S_{(i \mod n)+1, X \cup \{i\}} + \Sigma_{j \in X} b_j . S_{i,X-\{j\}} & \text{otherwise} \end{cases}$$

 $S_{i,\boldsymbol{X}}$ denotes the system waiting for activation of process $\mathsf{Pi}\,$ and where processes with indices in \boldsymbol{X} are active

The starting configuration is $S_{1,\phi}$

The LTS for n=2 is:



We can try to implement the scheduler in the following way:

$$egin{array}{rcl} A_i &=& a_i.B_i \ B_i &=& ar{c}_{(i \mod n)+1}.C_i \ C_i &=& b_i.D_i \ D_i &=& c_i.A_i \end{array}$$

Actions of kind \bar{c} are needed to signal to the next process (i.e., with the next index) that it can start working

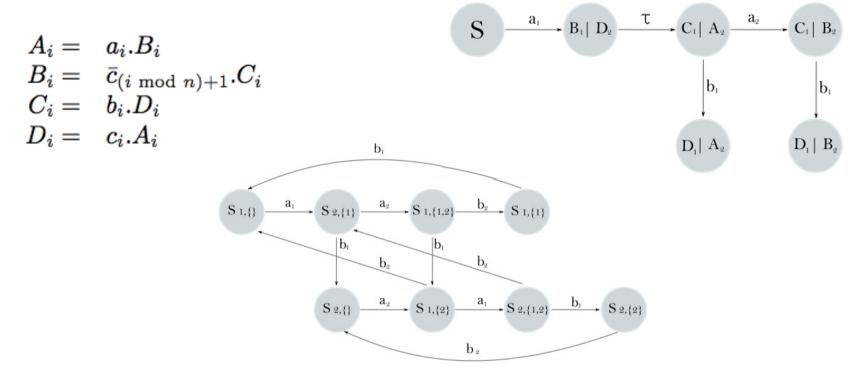
Actions of kind c are needed to receive from the previous process such a signal

Such actions implement a token ring; the token is initially given to the first process:

$$S = (A_1|D_2|\dots|D_n) \setminus_{\{c_1\dots c_n\}}$$

We now want to show that $S \approx S_{1,\emptyset}$

This is NOT the case. Indeed, consider the following part of the LTS for S (where in every state, names c1 and c2 are restricted):



 $S_{1,\{1,2\}}$ can perform b2 whereas (C1 | B2)\{c1,c2\} cannot

Problem: we have erroneously added the constraint that the i-th process cannot receive the token before its completion

→ In the implementation, action b_i always precedes action c_i Thus, a correct implementation is: $C_i = b_i \cdot Di + c_i \cdot b_i \cdot A_i$

