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Abstract

This project explores a multimodal biometric system that integrates face and
voice modalities to enhance the accuracy in both verification and identification
tasks. The system utilizes deep architectures, leveraging the FaceNet architecture
to extract face embeddings and ECAPA2 to extract robust speaker embeddings.
The two subsystems are fused at feature level, to evaluate their combined perfor-
mance. The evaluation includes multiple scenarios, for each of which we evaluated
the system in both verification and identification. Results demonstrate the effec-
tiveness of multimodal systems in achieving superior performance compared to
unimodal systems.
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1 Introduction

Multimodal biometric systems enhance security and reliability by combining physiolog-
ical and behavioral traits, such as fingerprints, facial recognition, and voice patterns.
This approach overcomes the limitations of unimodal systems, which rely on a single
biometric trait, by improving accuracy and robustness against unauthorized access.!

The integration of multiple biometric modalities can occur at various stages of the
recognition process, including feature extraction, matching scores, or decision-making.
This adaptability enables the development of tailored solutions for specific security
needs and operational contexts. [1]

In conclusion, multimodal biometric systems represent a major advancement in iden-
tity security. By leveraging multiple traits, they provide superior accuracy, resilience,
and versatility, making them ideal for applications ranging from secure access control
to identity management.

1.1 Summary of our work

The system leverages two state-of-the-art deep learning architectures for feature ex-
traction, as described in Sections 2 and 3. Additionally, a face localization module
was implemented to ensure accurate detection and alignment of facial regions prior to
feature extraction (2.1.2).

To facilitate evaluation, we constructed a multimodal dataset by combining samples
from two large-scale datasets tailored to each modality (as described in Section 4).

Section 5 presents the evaluation methodology and results, focusing on the system’s
performance across varying conditions. Finally, Section 6 outlines our conclusions and
future directions.

2 Face Modality developement

2.1 Face Detection
2.1.1 MediaPipe: Open-Source Face Detection Framework

MediaPipe, an open-source framework developed by Google, facilitates the creation of
multimodal machine learning pipelines, including areas such as computer vision, audio
processing, and gesture recognition. 2 One of MediaPipe’s key features is the Face Mesh
solution, which estimates 468 three-dimensional facial landmarks in real time, even on
mobile devices. These landmarks represent key facial points, including the eyes, nose,
mouth, and jaw, and are expressed in normalized 3D coordinates (x, y, z).

2.1.2 Face Alignment: Cropping and Centering the Face

Face alignment is the process of normalizing facial images to achieve a consistent rep-
resentation of the face. In our project, we utilized MediaPipe exclusively for detecting

!Mitek Systems, ” A Comprehensive Overview of Multimodal Biometrics” link
2Google, "MediaPipe” repository


https://www.miteksystems.com/blog/a-comprehensive-overview-of-multimodal-biometrics-the-future-of-digital-security-and-privacy
https://github.com/google-ai-edge/mediapipe

the face and obtaining its bounding box, while the cropping and further adjustments
were implemented independently.
The key steps are:

e Face Detection: Using MediaPipe’s face detection model to identify the face
and obtain a bounding box around the facial region.

e Cropping the Region of Interest: Isolating the face from the surrounding
context by cropping the image based on the obtained bounding box.

e Adding Margins: To include additional details and avoid cutting off parts of
the face, margins were added above and below the bounding box. These margins
are proportional to the height of the bounding box and ensure the cropped face
remains within the image bounds.

e Square Image Adjustment: After adding the margins, the resulting image
was adjusted to ensure the face is centered and the output image is squared,
maintaining uniformity.

This process ensures that facial images are consistent and normalized, enhancing accu-
racy in applications such as facial recognition and expression analysis.

2.2 Feature extraction

To extract features from the cropped face, we leveraged a deep Convolutional Neural
Network using the FaceNet architecture [2]. FaceNet directly maps face images to a
compact Euclidean embedding space where distances correspond to a measure of face
similarity. Tasks such as face recognition, verification, and clustering are efficiently
implemented using embeddings derived from this space. In our implementation, we
utilized the pre-trained weights of FaceNet, trained on the VGGFace2 dataset [3], which
are available on the Hugging Face platform®. This approach allowed us to accelerate
the development process while leveraging a robust feature extractor.

2.2.1 Implementation Details

The implemented model adopts the Inception-ResNet V1 architecture [4] as its back-
bone. This architecture combines the strengths of Inception modules and residual
learning, achieving high representational efficiency while maintaining computational
feasibility. Below, we describe key architectural components in detail. To define the
architecture, we leveraged some code fragments from a GitHub repo*. We implemented
the model using the PyTorch® library.

3Pre-trained FaceNet weights on HuggingFace: https://huggingface.co/py-feat/facenet

4PyTorch  implementation of Inception-Resnet-V1: https://github.com/timesler/
facenet-pytorch

SPyTorch documentation: https://pytorch.org


https://huggingface.co/py-feat/facenet
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://pytorch.org

2.2.2 Basic Building Blocks

The architecture (diagrams in Figure 1) leverages the following modules:

e BasicConv2d: A convolutional block comprising a convolutional layer (without
bias), batch normalization, and a ReLU activation. This block ensures efficient
feature extraction while maintaining numerical stability.

e Residual Blocks: Three primary types of residual blocks are used. Each block
implements parallel convolutional branches with varying kernel sizes, concatenat-
ing their outputs and introducing residual connections scaled by a factor. These
residual connections enhance gradient flow during training.

2.2.3 Key Architectural Components

The architecture is divided into distinct stages:

e Initial Feature Extraction: The model begins with a series of convolutional
layers and a max pooling layer (Stem block), extracting low-level features from
the input image.

e Intermediate Layers:
— 5x Inception-Resnet-A employs 5x Inception-Resnet-A modules to cap-

ture intricate spatial hierarchies.

— Reduction-A integrates three branches: a 3x3 convolution, a 1x1 followed
by two 3x3 convolutions, and a max pooling layer. This stage reduces spatial
resolution while increasing feature dimensionality.

— 10x Inception-resnet-B consists of stacked Block17 modules, refining fea-
tures with a wider receptive field through asymmetric kernels.
e Final Feature Extraction and Embedding:
— Reduction-B combines four parallel branches (3x3, 1x1-3x3, 1x1-3x3-3x3,
and max pooling).
— 5x Inception-resnet-C to refine high-level features.

— The final layers include global average pooling, dropout (to prevent overfit-
ting), and a fully connected layer mapping to a 512-dimensional embedding
space. Batch normalization ensures the embeddings lie on a unit hyper-
sphere, enabling robust similarity measures.
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Figure 1: Inception-Resnet-V1 Architecture
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Image source: https://www.aiuai.cn/aifarm465.html

3 Voice Modality developement

3.1 Implementation and Architecture

For the voice modality, we utilized an hybrid neural network based on the ECAPA2 ar-
chitecture [5]. ECAPA2 is a hybrid neural network designed to generate robust speaker
embeddings by combining the strengths of both 1D and 2D convolutional operations.
This architecture excels in speaker recognition tasks by producing embeddings that are
robust against overlapping speech and short utterances. For the purpose of the project,
we leveraged an implementation of ECAPA2 pre-trained on the VoxCeleb2 dataset [6],
which is publicly available on Hugging Face , which facilitated rapid development and
integration into our system.

6Pre-trained ECAPA2 on Hugging Face: https://huggingface.co/Jenthe/ECAPA2


https://www.aiuai.cn/aifarm465.html
https://huggingface.co/Jenthe/ECAPA2

3.1.1 Implementation Details

ECAPA2’s hybrid design leverages a combination of Local Feature Extractor (LFE)
blocks and a Global Feature Extractor (GFE) module to address the limitations of
traditional speaker verification models. Below, we detail the key components of this
architecture.

3.1.2 Key Architectural Components

e Local Feature Extractor (LFE): The LFE module consists of a cascade of
2D-convolutional layers followed by frequency-wise Squeeze-and-Excitation (3.1.3)
modules (Figure 3). These components enable the network to learn spatially in-
variant features, improving robustness against input perturbations such as over-
lapping speakers or noise. The module also integrates learnable positional encod-
ings to incorporate frequency positional information.

e Global Feature Extractor (GFE): The GFE module is implemented using a
lightweight TDNN subnetwork placed at the end of the architecture. This sub-
network aggregates frequency information from the LFE and ensures a uniform
Effective Receptive Field (ERF) across the frequency dimension. The GFE en-
hances the model’s capacity to exploit global frequency patterns while maintaining
computational efficiency.

e Channel-Dependent Attentive Statistics Pooling (CAS): CAS pooling is
applied to integrate global context into the final embeddings. This module com-
putes weighted mean and standard deviation statistics, which are then projected
to a 192-dimensional speaker embedding.

3.1.3 Frequency-wise Squeeze-Excitation (fwSE) Block

The Frequency-wise Squeeze-Excitation (fwSE) block [7] is an enhancement of the stan-
dard Squeeze-Excitation (SE) mechanism [8]. While traditional SE blocks apply a sin-
gle scalar weight per channel, fwSE introduces frequency-specific scaling, enabling the
network to better capture frequency-dependent variations in speech data. This is par-
ticularly advantageous in speaker verification tasks, where frequency characteristics are
critical.

Squeeze Operation In the fwSE block, the squeeze operation computes a mean
descriptor vector z € RY, where F is the number of frequency bins. For an input
feature map X € R*F*T where C, F, and T represent the channel, frequency, and
temporal dimensions respectively, z is calculated as:

c T
1
Zf:m22$f7i7j, VfE{l,...,F}, (1)
=1 j=1

where z; ; denotes the value of the feature map at frequency f, channel 7, and time j.



Excitation Operation The excitation operation generates scaling factors s € RY
for each frequency bin based on the mean descriptor vector z. The scaling factors are
computed as:

S = U(WgReLU(le + bl) + bz), (2)

where W, and W, are learnable weight matrices, by and by are biases, f(-) is a ReLU
activation function, and o(-) denotes the sigmoid function.

Rescaling The input feature map X is scaled along the frequency dimension using
the computed factors s. Specifically, for each frequency bin f:

Xf (—Sf'Xf, (3)

where X; € RE*T is the slice of the feature map corresponding to frequency bin f.

By rescaling features in a frequency-specific manner, the fwSE block injects global
frequency information into the network while preserving local details. This modification
significantly enhances the model’s ability to capture speaker-dependent characteristics
in speech signals.

3.1.4 Training Strategy

The ECAPA2 architecture was trained using the development partition of the Vox-
Celeb2 dataset, employing a Subcenter Additive Angular Margin (AAM) softmax loss
function to enhance intra-class compactness and inter-class separation. Notable training
strategies include:

e Margin-Mixup: A technique that enhances robustness against overlapping speak-
ers by predicting target classes from a mixture of two speakers with varying energy
ratios.

e Variable Length Training (VLT): To improve performance on short utter-
ances, the training protocol alternated between standard utterance lengths and
shorter random crops.
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Figure 2: ECAPA2 Architecture

4 Constructing a Multimodal dataset

Before proceeding with the evaluation phase, we needed to find a dataset that met our
need of multiple faces and voice tracks of an individual. After a careful research, we
lacked significant findings since a dataset this specific is not freely available on the web,
and the few ones that exists require a registration and authorization phase in order to
acquire the files.

In order to overcome this problem, our first and final solution, was to merge in a
smart fashion two different datasets that provided respectively multiple instances of
faces and voice registrations of the same individual. In this way, we achieved our goal
of creating a multimodal dataset that enabled us to reliably evaluate our model.

4.1 Face dataset

For the faces dataset, we decided to use the CelebFaces Attributes Dataset (CelebA)
from the University of Hong Kong [9]. The dataset provided to the public does not
include real face identities, available only upon request, but was nonetheless considered
fit for our use-case, since the images of the same individual were mapped with the same
anonymous id.



Our choice provided us with 202.599 anonymously labeled images that represented
10.177 different identities, covering large pose variations and background clutter. We
preferred this dataset over other ones for the high mean of images per identity and the
high number of identities in total. We also had the impression that the images of this
dataset looked like they were taken during a larger time span for several identities, but
this is just an impression we noted when searching for datasets.

After downloading it, we performed some analysis in order to evaluate the distribu-
tion of face photos for each identity and we found out that it was a little bit inconsistent.
In order to overcome this problem, we created our version of the CelebA dataset, with
a more convenient file structure and in which we included only the identities with more
than 25 occurrences, in order to discard the identities with less representation. After
this operation was successfully done, a total of 1487 identities fit for our purpose were
found.

4.2 Voice dataset

For the voice dataset, our choice fell upon LibriSpeech [10]. This dataset is a corpus of
approximately 1000 hours of read English speech. The data is derived from read audio
books from the LibriVox project, and has been carefully segmented and aligned. We
chose this dataset because it contains lots of short voice registrations (~ 10 seconds),
perfect for our use-case.

The authors present two versions of the LibriSpeech dataset: clean and other, which
differ in the quality of their recordings and transcriptions. The clean subset features
higher-quality audio with lower word error rates (WER), facilitating its use in less chal-
lenging ASR scenarios. In contrast, the other subset includes recordings with greater
variability and higher WER, offering a more demanding benchmark for ASR systems.
This distinction allows for comprehensive evaluation across diverse conditions.

Each dataset is divided into different downloadable archives, differing in the size.
Some comprehensive files are also provided in order to give more information about
the speakers (like name, book read and gender). The data is divided in folders, with
each folder representing the unique id of the speaker. Inside this folder, there are other
folders with the ids of the various audio books and inside those we finally find the voice
registrations.

Like with the images dataset, we proceeded with some data skimming and organi-
zation before the integration of the two datasets. In particular, we extrapolated the
files of each person in the various datasets and merged all the voice recordings into one
folder per identity, removing in this way the layer of folders regarding the audio book
read. We then removed the identities with less than 25 registrations, leaving us with a
total of 5874 different speakers.

4.3 Integrating Face and Voice data

For the integration part, we wanted to create our dataset by combining the identities
using an approach that will guarantee us to have a near 1:1 rate of images and voice
registrations for each identity. In order to achieve this result, we iterated on each
identity in the faces dataset and selected a correspondent in the voices dataset with

10



the same gender and the most similar number of samples. Then, a new unique id was
generated and the files were randomly paired one another.

After this operation, we were left with a total of 1167 identities, 487 males and 680
females.

5 Evaluation

5.1 Fusion of Biometric Traits

To identify the most effective method for combining the two biometric traits we con-
ducted an ALL-against-ALL (explained in the section below) evaluation on our dataset.
For the voice modality, we utilized the LibriSpeech-other dataset, which presents a more
challenging setting compared to LibriSpeech-clean. Our dataset comprises 1167 identi-
ties, each with 5 samples, where the voice recordings were truncated to 3 seconds per
utterance. Our goal was to explore various feature-level fusion strategies and evaluate
their performance across multiple metrics.

5.1.1 All-against-All evaluation

In the All-against-All evaluation, each template plays in turn the role of either gen-
uine/impostor or enrolled /not enrolled more than once according to the recognition
application.

We evaluated the systems for the following applications considering the multiple-
template scenario:

e Verification: For each probe, we perform one genuine attempt (comparing the
probe against the gallery templates of the same identity) and N — 1 impostor at-
tempts (comparing the probe against the gallery templates of different identities).

e Identification Open Set: For each probe, we perform one genuine attempt (we
try to identify the user against the gallery) and one impostor attempt (we test
how the user behaves as an impostor).

e Identification Closed Set: In this case, for each probe, we perform only one
genuine attempt. The system is constrained to identify the probe within the
known identities of the gallery set.

5.1.2 Fusion Strategies
We considered several feature-level fusion strategies, described as follows:

e Face only: Using only the face embeddings, represented as a feature vector of
length 512.

e Voice only: Using only the voice embeddings, represented as a feature vector of
length 192.

11



e Concatenation (concat): Direct concatenation of face and voice embeddings:

vV = [Vfacea Vvoice]
resulting in a combined feature vector of length 704.

e L2 norm + concat: Normalizing both face and voice embeddings to unit vectors
before concatenation:

{ Viace Vyoice :|
vaaceH’ ||Vvoice||

e L2 norm + sum: Normalizing both embeddings to unit vectors and summing
them, padding the voice embeddings with zeros to match the face embedding

length:
v = tace + pad (—VVOice )
||VfaC€ | | || Vyoice ||

e Scaling 4+ concat: Standardizing each embedding (mean subtraction and divi-
sion by standard deviation) before concatenation.

Vv — |:Vface — Mface Vvoice — ,uvoice:|

Oface Ovoice

e Scaling + sum: Standardizing both embeddings and summing them, with zero-
padding for the voice embeddings.

v — Viace — Hface + pad (Vvoice - ﬂvoice)

Oface Ovoice

5.1.3 Matching function

We used cosine similarity as the matching function because it effectively measures the
similarity between two feature vectors by calculating the cosine of the angle between
them. Cosine similarity is widely used in biometric and other pattern recognition
tasks, making it an ideal choice for our evaluation. It is preferred over Euclidean
distance because it focuses on the angle between vectors, making it insensitive to their
magnitudes. This is important when comparing embeddings, as it captures the relative
orientation between vectors rather than their scale. Additionally, cosine similarity is
more robust in high-dimensional spaces, where Euclidean distance can become less
informative.

As the codomain of the cosine similarity is [—1, 1], to normalize the output in the
range [0, 1], we leveraged the min/max function:

_33+1
2

Thus, the similarity between two vectors A and B is computed as:

s(A,B)=F (%)

12



5.1.4 Results

The results of the evaluation are summarized in Table 1. We report metrics for verifi-
cation (EER, AUROC, ZeroFAR, ZeroFRR), open-set identification (EER, AUROC),
and closed-set identification (CMS@1).

From the results, it is evident that the L2 norm + concat strategy outperformed
other fusion methods across all metrics. This approach achieved the lowest EER for
verification (0.199%), the highest AUROC in both verification (0.9998) and open-set
identification (0.9965), and the best closed-set identification accuracy (99.61% CMS@1).
Normalizing embeddings prior to fusion appears to enhance performance, as seen in the
comparison between raw concatenation and normalization-based approaches.

Methods using summation generally underperformed compared to concatenation,
likely due to the inherent differences in dimensionality and distribution between face
and voice embeddings. Scaling without normalization showed a significant degradation
in performance, emphasizing the importance of feature normalization when combining
embeddings.

These findings highlight the effectiveness of normalization in feature-level fusion
and suggest that concatenation, when paired with proper preprocessing, is the optimal
strategy for combining face and voice biometrics.

Fusion rule Verification Open Set Closed Set
EER | AUROC | ZeroFAR | ZeroFRR | EER | AUROC CMS@1
(%) (%) (%) (%) (%)

Voice only 0.252 | 0.9998 91.94 68.23 4.55 0.9844 99.30

Face only 2.778 | 0.9949 91.58 99.42 26.6 0.8092 81.92

L2 norm + concat | 0.199 | 0.9998 10.84 10.56 1.80 | 0.9965 99.61

L2 norm + sum 0.272 | 0.9997 12.98 18.50 1.95 0.9957 99.58

Scaling 4+ sum 0.908 | 0.9993 41.61 86.37 6.36 0.9696 97.19

Scaling + concat 0.821 | 0.9995 21.73 19.70 5.24 0.9763 97.76

Table 1: Impact of audio quality on performance.

5.2 Performance Metrics and Visualization

The following plots relate to the best-performing scenario identified in this first evalua-
tion. To provide a comprehensive analysis of its performance, we present the following
visualizations.

5.2.1 Verification

In the verification task, the system is asked to determine whether a given pair of bio-
metric traits, face and voice, belong to the same identity or not. To evaluate this,
we present several key performance curves. The FAR vs FRR curve displays the
relationship between the False Acceptance Rate (FAR) and the False Rejection Rate
(FRR), highlighting the Equal Error Rate (EER) where these two rates are equal. The
DET curve shows the tradeoff between detection errors (False Acceptance and False
Rejection) at different thresholds. Additionally, the ROC curve provides an overall
performance view by plotting the Genuine Acceptance Rate (GAR) against the False
Acceptance Rate (FAR) for various thresholds.

13



These curves allow us to assess the system’s accuracy and robustness in matching
face and voice biometrics for individual identity verification tasks.
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5.2.2 Identification Open Set

In the open-set identification task, the system is required to recognize whether a given
template matches one of the known identities or if it belongs to an unknown person.
This scenario is more challenging than closed-set identification, as it involves distin-
guishing between known and unknown individuals. For this task, we present the FAR
vs FRR curve, which illustrates the tradeoff between false acceptances and false
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rejections, providing insight into the system’s performance across various thresholds.
Additionally, the ROC curve is used to evaluate the system’s overall discrimination
ability by plotting the Detection and Identification Rate at rank 1 (DIR@1) against the
False Acceptance Rate (FAR) at different thresholds.

These visualizations help in understanding how well the system can perform in a
more realistic setting, where some biometric samples may belong to unknown individ-
uals.

FAR vs FRR with DIR and GRR
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Figure 7: Open Set Identification: FAR vs FRR curves
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Figure 8: Open Set Identification: ROC curve
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5.2.3 Identification Closed Set

In the closed-set identification task, the system is given a template and must correctly
identify the person from a predefined set of known identities. This is a standard iden-
tification scenario, where all possible identities are part of the system’s database. To
evaluate performance in this context, we present the CMC (Cumulative Match
Characteristic) curve, which shows the probability of a correct match as a function
of the rank in the ordered list of identities. The CMC curve helps to assess how quickly
the system can find the correct identity within the set, providing valuable insight into
the ranking quality and the effectiveness of the fusion method.

This metric is crucial for understanding the system’s ability to correctly identify
individuals from a closed set of known identities.

CMS at rank k

100007 — CMs
—-=- CMS = 1.0 at rank 130

0.9995 -

0.9990 4

0.9985 -

0.9980 4

0.9975 1

0.9970 4

0.9965

0.9960
1 5 10 15 20 25 30

Figure 9: Closed Set Identification: CMC curve

These plots provide insights into the system’s performance across different biometric
evaluation tasks and metrics.

5.3 Using LibriSpeech-clean

In this evaluation, we utilize the LibriSpeech-clean dataset for the voice modality, in
contrast to the previously used LibriSpeech-other dataset. The ’clean’ subset features
high-quality recordings with minimal background noise. For the face modality, we
continue to use the CelebA dataset.

The test scenario remains unchanged from the previous evaluation. We performed
an ALL-against-ALL evaluation with a total of 1167 identities, using 5 samples per
identity. For the fusion strategy, we applied the L2 norm + concat method, where both
the face and voice embeddings were normalized and then concatenated, allowing us to
combine the features from both modalities for improved performance.
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5.3.1 Verification

FAR vs FRR
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Figure 10: Verification: FAR vs FRR curves
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Figure 11: Verification: DET curve Figure 12: Verification: ROC curve
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5.3.2 Identification Open Set
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Figure 13: Open Set Identification: FAR vs FRR curves
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Figure 14: Open Set Identification: ROC curve
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5.3.3 Identification Closed Set
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Figure 15: Closed Set Identification: CMC curve

5.3.4 Performance comparison with LibriSpeech-clean vs LibriSpeech-other

As expected, the performance of the fusion strategy improves when using the LibriSpeech-
clean dataset compared to the LibriSpeech-other dataset. The results in Table 2 show
that the LibriSpeech-clean dataset achieves lower error rates across all the metrics, with
surprising low values for ZeroFAR and ZeroFRR. These differences highlight the im-
pact of higher-quality, cleaner data. The gain in performance was expected, given the
reduced noise and clearer speech in the LibriSpeech-clean dataset.

Voice dataset Verification Open Set Closed Set
EER | AUROC | ZeroFAR | ZeroFRR | EER | AUROC CMS@il
(%) (%) %) | (%) (%)

LibriSpeech-other 0.199 | 0.9998 10.84 10.56 1.80 0.9965 99.61

LibriSpeech-clean | 0.171 | 0.9999 5.73 1.73 1.50 | 0.9967 99.70

Table 2: LibriSpeech-clean vs LibriSpeech-other

5.4 Impact of the Number of Samples per Identity in the
Gallery

For the purpose of this analysis, we performed an All Probe-against-All Gallery eval-
uation to assess the impact of the number of samples per identity in the template
gallery. In this setup, there are two distinct sets: the probe set and the gallery
set. We again performed the evaluation under the multiple-template scenario, as
described in Section 5.1.1.

We tested three different scenarios where the number of samples per identity in the
gallery varied, while the total number of identities in the gallery set remained constant
at 300. The probe set consisted of 300 genuine users (who also appear in the gallery)
and 500 impostor users. Below, we provide a detailed analysis of the results for each of
these three tasks.
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5.4.1 Results

The Table 3 presents the performance results for varying numbers of gallery samples
per identity, evaluated across three different tasks: Verification, Open Set Identification,
and Closed Set Identification. It can be observed that increasing the number of samples
per identity in the gallery leads to improved performance. For Verification, the Error
Rate (EER) decreases as the number of gallery samples increases, from 0.68% with
1 sample to 0.16% with 5 samples. The EER in the Identification Open Set scenario
improved by a factor of 3.9. Similarly, the Correct Match at Rank 1 (CMS@1) improves
with more gallery samples, reaching 99.80% with 5 samples. Overall, these results
demonstrate the benefits of having more samples per identity, especially in the Open
Set Identification task, where the system benefits from enhanced recognition accuracy.

#gallery templates Verification Open Set Closed Set
per identity EER | AUROC | ZeroFAR | ZeroFRR | EER | AUROC CMS@il
(%) (%) (%) (%) (%)

1 0.68 0.9998 13.96 18.26 4.18 0.9861 99.0

2 0.25 0.9998 14.23 7.78 1.50 0.9960 99.75

3 0.19 0.9998 17.57 9.70 1.47 0.9977 99.82

5 0.16 | 0.9999 21.53 2.33 1.07 | 0.9984 99.80

Table 3: Impact of varying gallery sample sizes on performance
5.4.2 Trade-off between FAR and FRR

Generally speaking, increasing the number of samples in the gallery tends to decrease
the FRR while leading to an increase in the FAR. This trade-off is a common observation
in biometric systems, where a larger gallery provides more data for accurate matching,
but also raises the likelihood of misidentifying impostors. However, it is worth noting
that the EER decreased as well, indicating that the system’s overall performance im-
proved with a larger gallery. This suggests that, while there is a trade-off between FAR
and FRR, the overall system’s efficiency in correctly identifying users may benefit from
adding more samples to the gallery.

6 Conclusions

The evaluation work clearly shows the effectiveness of combining voice and video modal-
ities for biometric person recognition. The integration of these two modalities leverages
the strengths of both, resulting in a robust and reliable system with improved accu-
racy compared to single-modal approaches, offering enhanced resilience to variations in
environmental conditions, occlusions, and noise.

6.1 Future work

One potential area for future improvement is the incorporation of liveness detection
techniques to enhance the system’s resilience against spoofing attacks. Spoofing, such as
using pre-recorded voice samples or photos, poses a significant threat. To address this,
a binary classifier could be implemented to distinguish between genuine and spoofed
inputs for both voice and video modalities.
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The scores generated by the liveness detection classifier could then be fused with the
biometric recognition scores, creating a unified decision-making framework. This fusion
would allow the system to mitigate the impact of spoofing attempts while maintaining
high recognition accuracy.
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