vault backup: 2025-04-28 08:37:04
This commit is contained in:
parent
c7b0b8e6b3
commit
4e8e16e924
2 changed files with 14 additions and 3 deletions
|
@ -13,4 +13,15 @@ $P \implies P'$ if and only if there exist $P_{0}, P_{1},\dots,P_{k}$ (for $k \g
|
|||
|
||||
relation $\xRightarrow{\hat{\alpha}}$:
|
||||
- if $\alpha=\tau$ then $\xRightarrow{\hat{\alpha}}\triangleq\implies$
|
||||
- otherwise $\xRightarrow{\hat{\alpha}}\triangleq\implies\xrightarr$
|
||||
- otherwise $\xRightarrow{\hat{\alpha}}\triangleq\implies\xrightarrow{\alpha}\implies$
|
||||
|
||||
S is a weak simulation if and only if $$\forall(p, q) \in S \space \forall p \xrightarrow{\alpha} p' \exists q' \space s.t. \space q\xRightarrow{\hat{\alpha}}q' \space and \space (p', q') \in S$$
|
||||
A relation S is called weak bisimulation if both $S$ and $S^{-1}$ are weak simulations.
|
||||
We say that p and q are weakly bisimilar, written $p \approx q$, if there exists a weak bisimulation $S$ such that $(p, q) \in S$.
|
||||
|
||||
**Prop:**
|
||||
$\approx$ is a
|
||||
1. equivalence
|
||||
2. congruence
|
||||
3. weak bisimulation
|
||||
4. $\sim a$
|
Loading…
Add table
Add a link
Reference in a new issue