vault backup: 2025-01-18 00:20:19

This commit is contained in:
Marco Realacci 2025-01-18 00:20:19 +01:00
parent 43ff049a0e
commit b79e6352be
2 changed files with 6 additions and 6 deletions

View file

@ -13,12 +13,12 @@
"state": {
"type": "markdown",
"state": {
"file": "Foundation of data science/notes/9 Gradient Boosting.md",
"file": "Foundation of data science/notes/9 Decision tree.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "9 Gradient Boosting"
"title": "9 Decision tree"
}
},
{
@ -254,7 +254,9 @@
},
"active": "1fb39a1dfc7b5200",
"lastOpenFiles": [
"Foundation of data science/notes/9 K-Nearest Neighbors.md",
"Foundation of data science/notes/9 XGBoost.md",
"Foundation of data science/notes/9 Random Forest.md",
"Foundation of data science/notes/9 Gradient Boosting.md",
"Biometric Systems/notes/8 Face anti spoofing.md",
"Biometric Systems/notes/3. Recognition Reliability.md",
@ -286,8 +288,6 @@
"Foundation of data science/notes/1 CV Basics.md",
"Foundation of data science/slides/More on Neural Networks (1).pdf",
"Foundation of data science/slides/Normal_equation_poly_lwr.pdf",
"Foundation of data science/notes/9 Random Forest.md",
"Foundation of data science/notes/9 K-Nearest Neighbors.md",
"Foundation of data science/slides/binary_classification.pdf",
"Biometric Systems/images/Pasted image 20241228171617.png",
"Biometric Systems/images/Pasted image 20241228174722.png",

View file

@ -73,8 +73,8 @@ L'algoritmo costruisce molti alberi decisionali su sottoinsiemi casuali del data
### **Complessità Computazionale**
- **Training:**
Per un singolo albero: $O(d \cdot n \log n)$, dove dd è il numero di feature e nn il numero di campioni.
Con TT alberi: $O(T \cdot d \cdot n \log n)$.
Per un singolo albero: $O(d \cdot n \log n)$, dove d è il numero di feature e n il numero di campioni.
Con T alberi: $O(T \cdot d \cdot n \log n)$.
- **Predizione:**
Predire su un campione richiede $O(T \cdot \text{depth})$, dove la profondità ($\text{depth}$) è proporzionale a $\log n$.