vault backup: 2025-03-25 16:37:22

This commit is contained in:
Marco Realacci 2025-03-25 16:37:22 +01:00
parent 4f091b7241
commit df6fd20117

View file

@ -59,8 +59,10 @@ It can be proved that there exists no wait-free implementation of $\Omega$ in an
2. let t be an upper bound on the number of possible failing processes and f the real number of process failed (hence, $0\leq f\leq t\leq n-1$, with f unknown and t known in advance).
Then, there are at least $t-f$ correct processes different from $p_L$ with a timer s.t. $\exists$ time $\tau_{2}$ for each time interval $\delta$, if their timer is set to $\delta$ after $\tau_{2}$, it expires at least after $\delta$.
(stiamo dicendo che il timer scade sicuramente dopo $\delta$, il che ci permette di non considerare erroneamente come fallito il processo. Perché non esattamente a $\delta$? Perché è un sistema asincrono e non c'è un clock globale)
REMARK: $\tau_{1}, \tau_{2}, \nabla$ and $p_L$ are all unknown.
>[!warning] Remark
$\tau_{1}, \tau_{2}, \nabla$ and $p_L$ are all unknown :/
IDEA:
- `PROGRESS[1..n]` is an array of SWMR atomic registers used by procs to signal that theyre alive