vault backup: 2025-04-15 16:15:01
This commit is contained in:
parent
592fc55cff
commit
f8a2d4a2d6
2 changed files with 5 additions and 5 deletions
6
.obsidian/workspace.json
vendored
6
.obsidian/workspace.json
vendored
|
@ -41,12 +41,12 @@
|
||||||
"state": {
|
"state": {
|
||||||
"type": "markdown",
|
"type": "markdown",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "Concurrent Systems/notes/12 - Calculus of communicating system.md",
|
"file": "Concurrent Systems/notes/12b - CCS cose varie.md",
|
||||||
"mode": "source",
|
"mode": "source",
|
||||||
"source": false
|
"source": false
|
||||||
},
|
},
|
||||||
"icon": "lucide-file",
|
"icon": "lucide-file",
|
||||||
"title": "12 - Calculus of communicating system"
|
"title": "12b - CCS cose varie"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -221,8 +221,8 @@
|
||||||
},
|
},
|
||||||
"active": "a222ab88db5cfdd0",
|
"active": "a222ab88db5cfdd0",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
"Concurrent Systems/notes/11 - LTSs and Bisimulation.md",
|
|
||||||
"Concurrent Systems/notes/12 - Calculus of communicating system.md",
|
"Concurrent Systems/notes/12 - Calculus of communicating system.md",
|
||||||
|
"Concurrent Systems/notes/11 - LTSs and Bisimulation.md",
|
||||||
"Concurrent Systems/notes/10 - Implementing Consensus.md",
|
"Concurrent Systems/notes/10 - Implementing Consensus.md",
|
||||||
"Concurrent Systems/notes/12b - CCS cose varie.md",
|
"Concurrent Systems/notes/12b - CCS cose varie.md",
|
||||||
"Concurrent Systems/slides/class 12.pdf",
|
"Concurrent Systems/slides/class 12.pdf",
|
||||||
|
|
|
@ -2,10 +2,10 @@ An n-ary semaphore S(n)(p,v) is a process used to ensure that there are no more
|
||||||
|
|
||||||
The specification of a unary semaphore is the following:
|
The specification of a unary semaphore is the following:
|
||||||
$$S^{(1)} \triangleq p \cdot S_{1}^{(1)}$$
|
$$S^{(1)} \triangleq p \cdot S_{1}^{(1)}$$
|
||||||
$$S_{1}^{(1)} \triangleq p \cdot S_{1}^{(1)}$$
|
$$S_{1}^{(1)} \triangleq p \cdot S_{}^{(1)}$$
|
||||||
The specification of a binary semaphore is the following:
|
The specification of a binary semaphore is the following:
|
||||||
$$S_{}^{(2)} \triangleq p \cdot S_{1}^{(2)}$$
|
$$S_{}^{(2)} \triangleq p \cdot S_{1}^{(2)}$$
|
||||||
$$S_{1}^{(2)} \triangleq p \cdot S_{1}^{(2)}+v\cdot S^{(2)}$$
|
$$S_{1}^{(2)} \triangleq p \cdot S_{2}^{(2)}+v\cdot S^{(2)}$$
|
||||||
$$S_{2}^{(2)} \triangleq v \cdot S_{1}^{(2)}$$
|
$$S_{2}^{(2)} \triangleq v \cdot S_{1}^{(2)}$$
|
||||||
|
|
||||||
If we consider S(2) as the specification of the expected behavior of a binary semaphore and S(1) | S(1) as its concrete implementation, we can show that $$S^{(1)}|S^{(1)} \space \textasciitilde \space S^{2}$$
|
If we consider S(2) as the specification of the expected behavior of a binary semaphore and S(1) | S(1) as its concrete implementation, we can show that $$S^{(1)}|S^{(1)} \space \textasciitilde \space S^{2}$$
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue