master-degree-notes/Concurrent Systems/notes/13 -.md

26 lines
No EOL
1.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

An n-ary semaphore S(n)(p,v) is a process used to ensure that there are no more than n istances of the same activity concurrently in execution. An activity is started by action p and is terminated by action v.
The specification of a unary semaphore is the following:
$$S^{(1)} \triangleq p \cdot S_{1}^{(1)}$$
$$S_{1}^{(1)} \triangleq p \cdot S_{1}^{(1)}$$
The specification of a binary semaphore is the following:
$$S_{}^{(2)} \triangleq p \cdot S_{1}^{(2)}$$
$$S_{1}^{(2)} \triangleq p \cdot S_{1}^{(2)}+v\cdot S^{(2)}$$
$$S_{2}^{(2)} \triangleq v \cdot S_{1}^{(2)}$$
If we consider S(2) as the specification of the expected behavior of a binary semaphore and S(1) | S(1) as its concrete implementation, we can show that $$S^{(1)}|S^{(1)} \space \textasciitilde \space S^{2}$$
This means that the implementation and the specification do coincide. To show this equivalence, it suffices to show that following relation is a bisimulation:
![](../../Pasted%20image%2020250415082906.png)
## Restrictions
**Proposition:** a.P\a 0
*Proof:*
- S = {(a.P\a , 0)} is a bisimulation
Which challenges can (a.P)\a have?
- a.P can only perform a (and become P)
- however, because of restriction, a.P\a is stuck
No challenge from a.P\a, nor from 0 à bisimilar!
**Proposition:**